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Figure 1: Overview of the experimental treatments and controls. Top two rows: The base networks
are trained using standard supervised backprop on only half of the ImageNet dataset (first row: A
half, second row: B half). The labeled rectangles (e.g. WA1) represent the weight vector learned for
that layer, with the color indicating which dataset the layer was originally trained on. The vertical,
ellipsoidal bars between weight vectors represent the activations of the network at each layer. Third
row: In the selffer network control, the first n weight layers of the network (in this example, n = 3)
are copied from a base network (e.g. one trained on dataset B), the upper 8− n layers are randomly
initialized, and then the entire network is trained on that same dataset (in this example, dataset B).
The first n layers are either locked during training (“frozen” selffer treatment B3B) or allowed to
learn (“fine-tuned” selffer treatment B3B+). This treatment reveals the occurrence of fragile co-
adaptation, when neurons on neighboring layers co-adapt during training in such a way that cannot
be rediscovered when one layer is frozen. Fourth row: The transfer network experimental treatment
is the same as the selffer treatment, except that the first n layers are copied from a network trained
on one dataset (e.g. A) and then the entire network is trained on the other dataset (e.g. B). This
treatment tests the extent to which the features on layer n are general or specific.

3 Experimental Setup

Since Krizhevsky et al. (2012) won the ImageNet 2012 competition, there has been much interest
and work toward tweaking hyperparameters of large convolutional models. However, in this study
we aim not to maximize absolute performance, but rather to study transfer results on a well-known
architecture. We use the reference implementation provided by Caffe (Jia et al., 2014) so that our
results will be comparable, extensible, and useful to a large number of researchers. Further details of
the training setup (learning rates, etc.) are given in the supplementary material, and code and param-
eter files to reproduce these experiments are available at http://yosinski.com/transfer.

4 Results and Discussion

We performed three sets of experiments. The main experiment has random A/B splits and is dis-
cussed in Section 4.1. Section 4.2 presents an experiment with the man-made/natural split. Sec-
tion 4.3 describes an experiment with random weights.
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Figure2: The results from this paper’smain experiment. Top: Each marker in the figure represents
the average accuracy over the validation set for a trained network. The white circles above n =
0 represent the accuracy of baseB. There are eight points, because we tested on four separate
random A/B splits. Each dark blue dot represents a BnB network. Light blue points represent
BnB+ networks, or fine-tuned versions of BnB. Dark red diamonds are AnB networks, and light
red diamonds are the fine-tuned AnB+ versions. Points are shifted slightly left or right for visual
clarity. Bottom: Lines connecting themeansof each treatment. Numbered descriptions aboveeach
line refer to which interpretation fromSection 4.1 applies.

4.1 Similar Datasets: RandomA/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure2. The resultsyield many different conclusions. In each of the following interpre-
tations, wecompare theperformance to thebasecase (whitecirclesand dotted line in Figure2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label theseBnB networks. Similarly, wehaveaggregated the
statistically identical BnA andAnB networksand just call themAnB.
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The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure2. The resultsyield many different conclusions. In each of the following interpre-
tations, wecompare theperformance to thebasecase (whitecirclesand dotted line in Figure2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label theseBnB networks. Similarly, wehaveaggregated the
statistically identical BnA andAnB networksand just call themAnB.
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tations, wecompare theperformance to thebasecase (whitecirclesand dotted line in Figure2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label theseBnB networks. Similarly, wehaveaggregated the
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Table1: Performanceboost of AnB+ over controls, averaged over different rangesof layers.
mean boost mean boost

layers over over
aggregated baseB selffer BnB+

1-7 1.6% 1.4%
3-7 1.8% 1.4%
5-7 2.1% 1.7%

4.2 Dissimilar Datasets: SplittingMan-madeandNatural ClassesIntoSeparateDatasets

Asmentioned previously, theeffectivenessof feature transfer is expected to declineas thebaseand
target tasks become less similar. We test this hypothesis by comparing transfer performance on
similar datasets (the random A/B splits discussed above) to that on dissimilar datasets, created by
assigningman-madeobject classestoA andnatural object classestoB. Thisman-made/natural split
createsdatasetsasdissimilar aspossiblewithin the ImageNet dataset.
Theupper-left subplot of Figure3 showstheaccuracy of abaseA and baseB network (whitecircles)
and BnA and AnB networks (orange hexagons). Lines join common target tasks. The upper of the
two linescontainsthosenetworkstrained toward thetarget task containing natural categories(baseB
andAnB). Thesenetworksperformbetter than thosetrained toward theman-madecategories, which
may bedue to having only 449 classes instead of 551, or simply being an easier task, or both.

4.3 RandomWeights

Wealso compare to random, untrained weights because Jarrett et al. (2009) showed— quite strik-
ingly — that the combination of random convolutional filters, rectification, pooling, and local nor-
malization canwork almost aswell as learned features. They reported this result on relatively small
networksof twoor threelearned layersandon thesmaller Caltech-101dataset (Fei-Fei et al., 2004).
It isnatural to ask whether or not thenearly optimal performanceof randomfiltersthey report carries
over to adeeper network trained on a larger dataset.
Theupper-right subplot of Figure 3 shows theaccuracy obtained when using random filters for the
first n layers for various choices of n. Performance falls off quickly in layers 1 and 2, and then
drops to near-chance levels for layers 3+, which suggests that getting random weights to work in
convolutional neural networksmay not be as straightforward as it was for the smaller network size
and smaller dataset used by Jarrett et al. (2009). However, the comparison is not straightforward.
Whereas our networks havemax pooling and local normalization on layers 1 and 2, just as Jarrett
et al. (2009) did, we use a different nonlinearity (relu(x) instead of abs(tanh(x))), different layer
sizesand number of layers, aswell asother differences. Additionally, their experiment only consid-
ered two layers of random weights. The hyperparameter and architectural choices of our network
collectively provideonenew datapoint, but it may well bepossible to tweak layer sizesand random
initialization details to enablemuch better performance for randomweights.5

The bottom subplot of Figure 3 shows the results of the experiments of the previous two sections
after subtracting the performance of their individual base cases. These normalized performances
are plotted across the number of layers n that are either random or were trained on a different,
basedataset. This comparison makes two thingsapparent. First, the transferability gap when using
frozen featuresgrowsmorequickly asn increases for dissimilar tasks (hexagons) than similar tasks
(diamonds), with adrop by thefinal layer for similar tasksof only 8% vs. 25% for dissimilar tasks.
Second, transferring even fromadistant task isbetter than using randomfilters. Onepossiblereason
this latter result may differ from Jarrett et al. (2009) is because their fully-trained (non-random)
networkswereoverfittingmoreon thesmaller Caltech-101 dataset than ourson the larger ImageNet

informative, however, because the performance at each layer is based on different random draws of the upper
layer initialization weights. Thus, the fact that layers 5, 6, and 7 result in almost identical performanceacross
random drawssuggests that multiple runsat agiven layer would result in similar performance.

5For example, the training lossof thenetwork with three random layers failed to converge, producing only
chance-level validationperformance. Muchbetter convergencemay bepossiblewithdifferent hyperparameters.
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4.1 Similar Datasets: RandomA/B splits

The results of all A/B transfer learning experiments on randomly split (i.e. similar) datasets are
shown3 in Figure2. The resultsyield many different conclusions. In each of the following interpre-
tations, wecompare theperformance to thebasecase (whitecirclesand dotted line in Figure2).

3AnA networks and BnB networks are statistically equivalent, because in both cases a network is trained
on 500 random classes. To simplify notation we label theseBnB networks. Similarly, wehaveaggregated the
statistically identical BnA andAnB networksand just call themAnB.
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connects networks trained to the “natural” target task, and the lower line connects those trained to-
ward the“man-made” target task. Top right: Performancewhen thefirst n layersconsist of random,
untrained weights. Bottom: The top two plots compared to the random A/B split from Section 4.1
(red diamonds), all normalized by subtracting their base level performance.

dataset, making their random filters perform better by comparison. In the supplementary material,
weprovidean extraexperiment indicating theextent to which our networksareoverfit.

5 Conclusions
We have demonstrated a method for quantifying the transferability of features from each layer of
a neural network, which reveals their generality or specificity. We showed how transferability is
negatively affected by two distinct issues: optimization difficulties related to splitting networks in
themiddleof fragilely co-adapted layersand thespecializationof higher layer featuresto theoriginal
task at the expense of performance on the target task. We observed that either of these two issues
may dominate, depending on whether features are transferred from the bottom, middle, or top of
the network. We also quantified how the transferability gap grows as the distance between tasks
increases, particularly when transferring higher layers, but found that even features transferred from
distant tasks are better than random weights. Finally, we found that initializing with transferred
features can improve generalization performance even after substantial fine-tuning on a new task,
which could beagenerally useful technique for improving deep neural network performance.
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