Deep Kernel Learning

- Wilson et al. (arXiv 2015/11/6)
 - Carnegie Mellon University
 - Salakhutdinovさんも著者の一人

Deep learning + Gaussian process

□ 選んだ理由

- □ 現在カーネル&ガウス過程に興味あり
- タイトルがヤバい

ガウス過程

ガウス過程とは?

- **□** <u>関数の確率分布</u> $f(\mathbf{x}) \sim \mathcal{GP}(\mu, k_{\gamma})$
- D次元の入力ベクトルのデータセット*X* = { x_1, \ldots, x_n }に対する関数の出力 ベクトル y = ($y(x_1), \ldots, y(x_n)$)^Tの同時分布が常にガウス分布

$$\mathbf{f} = f(X) = [f(\mathbf{x}_1), \dots, f(\mathbf{x}_n)]^\top \sim \mathcal{N}(\boldsymbol{\mu}, K_{X,X})$$

平均ベクトルは $\mu_i = \mu(x_i)$, 共分散行列は $(K_{X,X})_{ij} = k_\gamma(\mathbf{x}_i, \mathbf{x}_j)$ で完全に記述される

線形回帰とガウス過程

- 通常の線形回帰は、 $\mathbf{y} = \Phi \mathbf{w}$ と書ける. ■ Φは計画行列 $\begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{pmatrix} = \begin{pmatrix} \phi_1(\mathbf{x}^{(1)}) \cdots \phi_H(\mathbf{x}^{(1)}) \\ \phi_1(\mathbf{x}^{(2)}) \cdots \phi_H(\mathbf{x}^{(2)}) \\ \vdots & \vdots \\ \phi_1(\mathbf{x}^{(N)}) \cdots \phi_H(\mathbf{x}^{(N)}) \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ \vdots \\ w_H \end{pmatrix}$
 - 重 重みwがガウス分布 $p(\mathbf{w}) = N(\mathbf{0}, \alpha^{-1}\mathbf{I})$ に従っているとすると、yもガウス分布 に従い、平均0、分散 $\alpha^{-1}\Phi\Phi^T$ となる。

$$p(\mathbf{y}) = N(\mathbf{y}|\mathbf{0}, \alpha^{-1}\mathbf{\Phi}\mathbf{\Phi}^T)$$

□ ここで,分散はカーネル関数に置き換えることができる.

$$\mathbf{K} = \alpha^{-1} \mathbf{\Phi} \mathbf{\Phi}^T$$

- □ つまり, ガウス過程は*f*(*x*)の事前分布に対応
 - 任意のデータについて成り立つので、ガウス過程は無限次元のガウス分布
 - 重みwは明示的に考えない=ノンパラメトリック

線形回帰とガウス過程

□ 実際には観測値にノイズが入っている.

$$\begin{cases} y = \mathbf{w}^T \phi(\mathbf{x}) + \epsilon \\ \epsilon \sim \mathcal{N}(0, \beta^{-1} \mathbf{I}) \end{cases} \implies p(y|f) = \mathcal{N}(\mathbf{w}^T \phi(\mathbf{x}), \beta^{-1} \mathbf{I}) \end{cases}$$

□ ここで, *f*について周辺化する

$$p(y|\mathbf{x}) = \int p(y|f)p(f|\mathbf{x})df$$
$$= \mathbf{N}(0, \mathbf{C})$$

□ これもガウス分布

□ ただしCは,

$$C(\mathbf{x}_i, \mathbf{x}_j) = k(\mathbf{x}_i, \mathbf{x}_j) + \beta^{-1}\delta(i, j)$$

つまり、ガウス過程はカーネル関数とハイパーパラメータで完全に記述できる!

ガウス過程の予測分布

□ 新しいy^{new}とこれまでのyの結合分布もガウス分布.

□ よって,予測分布は

$$p(y^{\text{new}} | \mathbf{x}^{\text{new}}, \mathbf{X}, \mathbf{y}, \theta)$$

$$= \frac{p((\mathbf{y}, y^{\text{new}}) | (\mathbf{X}, \mathbf{x}^{\text{new}}), \theta)}{p(\mathbf{y} | \mathbf{X}, \theta)}$$

$$\propto \exp\left(-\frac{1}{2}([\mathbf{y}, y^{\text{new}}] \begin{bmatrix} \mathbf{K} & \mathbf{k} \\ \mathbf{k}^T & k \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{y} \\ y^{\text{new}} \end{bmatrix} - \mathbf{y}^T \mathbf{K}^{-1} \mathbf{y}\right)$$

$$\sim N(\mathbf{k}^T \mathbf{K}^{-1} \mathbf{y}, k - \mathbf{k}^T \mathbf{K}^{-1} \mathbf{k})$$

ロ ただし
$$\mathbf{K} = [k(\mathbf{x}, \mathbf{x}')].$$

 $\mathbf{k} = (k(\mathbf{x}^{\text{new}}, \mathbf{x}_1), \cdots, k(\mathbf{x}^{\text{new}}, \mathbf{x}_N))$

□ カーネル関数は任意に設定,パラメータは経験ベイズで学習する.

モデルを仮定せずにデータから自動的に学習
 データの少ないところが分散が大きくなっている=曖昧さ

ガウス過程のメリット&デメリット

🗖 メリット

- □ 任意のカーネルを設定できる
- □ 無限次元の特徴量を考えることができる(ガウスカーネル)
- □ 予測分布について, データ点ごとの分散を考えることができる

□ デメリット

- □ 訓練データをすべて保持する必要がある(O(n²)).
- 計算量が多い
 - □ 学習: *0*(*n*³)
 - □ 予測:平均*0*(*n*),分散*0*(*n*²)

ガウス過程とニューラルネットワーク

ガウス過程のノンパラメトリックな特徴をニューラルネットワークで!

"How can Gaussian processes possibly replace neural networks? Have we thrown the baby out with the bathwater?" [MacKay1998]
 めんどいパラメータを自動調節したい(ちょうどみんなイライラしてた頃).

Bayesian Learning for Neural Networks [Neal 1996]
 NealのD論(指導教官はHinton, 実質的相談相手はMacKey)
 機械学習のコミュニティでガウス過程が利用された初めての例
 ニューラルネットワークの有限な基底関数を無限の基底関数に置き換えた。

□ 近年では、表現力の高いカーネル関数が提案されている

- [Wilson, 2014][Wilson and Adams, 2013][Lloyd et al., 2014][Yang et al., 2015]
- □ 人間の介入なしで, データから高次元の構造を学習できる.
- ただし、これはニューラルネットワークを置き換えるということではない
- むしろ組み合わせることが大事!(本研究の目標)

ガウス過程+ニューラルネットワークはこれまでも様々提案されている.

Gaussian process regression network [Wilson et al., 2012]
 全ての重みをガウス過程で置き換えた

- Damianou and Lawrence (2013)
 全ての活性化関数をガウス過程に.
- Salakhutdinov and Hinton (2008)
 DBNとガウス過程の融合.
- Calandra et al. (2014)
 - NNとガウス過程の融合, sharp discontinuitiesを学習可能

ただし、どの手法も数千以上訓練データを大きくできない.

提案手法

kを基底カーネルとして、入力xからの変換を次のように表す。

 $k(\mathbf{x}_i, \mathbf{x}_j | \boldsymbol{\theta}) \to k(g(\mathbf{x}_i, \mathbf{w}), g(\mathbf{x}_j, \mathbf{w}) | \boldsymbol{\theta}, \mathbf{w})$

- ただしgを非線形写像(DNN)とする(wは重みなどのパラメータ).
- 本研究ではRBFカーネルの他, spectral mixture (SM) カーネル [Wilson and Adams, 2013]を利用

$$k_{\rm SM}(\mathbf{x}, \mathbf{x}'|\boldsymbol{\theta}) = \sum_{q=1}^{Q} a_q \frac{|\Sigma_q|^{\frac{1}{2}}}{(2\pi)^{\frac{D}{2}}} \exp\left(-\frac{1}{2}||\Sigma_q^{\frac{1}{2}}(\mathbf{x} - \mathbf{x}')||^2\right) \cos\langle \mathbf{x} - \mathbf{x}', 2\pi\boldsymbol{\mu}_q \rangle$$

□ 準周期定常を見つけることができる.

□ 一方DNNの写像gでは非定常で階層的な構造を捉える

先ほどのディープなカーネルをガウス過程の共分散行列とする

- 最終層がガウス過程になったDNNと解釈できる
- カーネルをRBFやSMにした場合無限の基底関数となるので,無限の隠れユニットを考えることと同じになる.

□ ガウス過程の周辺尤度Lを最大化する(経験ベイズ)

 $\log p(\mathbf{y}|\boldsymbol{\gamma}, X) \propto -[\mathbf{y}^{\top} (K_{\boldsymbol{\gamma}} + \sigma^2 I)^{-1} \mathbf{y} + \log |K_{\boldsymbol{\gamma}} + \sigma^2 I|]$

□ カーネルのパラメータ θ とDNNのパラメータwについて偏微分

$\partial \mathcal{L}$ _	$\partial \mathcal{L} \ \partial K_{\gamma}$	$\partial \mathcal{L}$ _	$\partial \mathcal{L}$	∂K_{γ}	$\partial g(\mathbf{x}, \mathbf{w})$
$\overline{\partial \theta}$ –	$\overline{\partial K_{\gamma}} \overline{\partial \theta}$,	$\overline{\partial \mathbf{w}}$ –	$\overline{\partial K_{\gamma}} \overline{\partial}$	$\overline{\partial g(\mathbf{x},\mathbf{w})}$	$\partial \mathbf{w}$

□ カーネルによる偏微分の部分は

$$\frac{\partial \mathcal{L}}{\partial K_{\gamma}} = \frac{1}{2} (K_{\gamma}^{-1} \mathbf{y} \mathbf{y}^{\top} K_{\gamma}^{-1} - K_{\gamma}^{-1})$$

KISS-GP共分散行列

カーネルKをKISS-GP共分散行列で近似 [Wilson and Nickisch, 2015]
 [Wilson et al., 2015]

 $K_{\gamma} \approx M K_{U,U}^{\text{deep}} M^{\top} := K_{\text{KISS}}$

- M:補完重みのスパース行列
- K:ディープカーネルから求める
- **□** 予測 K_{KISS}^{-1} yの際は, linear conjugate gradients (LCG) を使う
- その他細い話は省きます.
- □ 他の近似手法に比べて計算量が少ない&高性能
 - $\square \mathcal{O}(n+h(m))$
 - ② 変分近似の手法[Quin onero-Candela and Rasmussen, 2005] だと $\mathcal{O}(m^2n + m^3)$ かつ精度も良くない

□ 本研究では次の3つのタスクで実験

- □ UCI repositoryの回帰問題
- □ 顔画像の回転角度抽出
- MNIST画像の回帰問題
- □ ステップ関数の回帰問題

- □ DNNはCaffe, KISS-GPはGPML で実装
- □ DNNの学習はSGD,活性化関数はReLU
 - DNNを事前学習した後、出力をKISS-GPの入力とする.
 - □ 学習は周辺尤度を偏微分して更新

UCI repositoryの回帰問題

□ ネットワーク構造

n<6000 : [d-1000-500-50-2]</p>

- □ n>6000 : [d-1000-1000-500-50-2]
- 厳密なGPはデータセットが膨大な時は扱えないので、Fastfood finite basis function expansionsで推定.

			RMSE							Runtime(s)		
Datasets	n	d		GP		DNN	DKL		DNN	DI	KL	
			RBF	$_{\rm SM}$	best		RBF	SM		RBF	SM	
Gas	2,565	128	$0.21 {\pm} 0.07$	$0.14{\pm}0.08$	$0.12{\pm}0.07$	$0.11 {\pm} 0.05$	$0.11 {\pm} 0.05$	$0.09{\pm}0.06$	7.43	7.80	10.52	
Skillcraft	3,338	19	1.26 ± 3.14	$0.25{\pm}0.02$	$0.25 {\pm} 0.02$	$0.25{\pm}0.00$	$0.25{\pm}0.00$	$0.25{\pm}0.00$	15.79	15.91	17.08	
SML	4,137	26	$6.94{\pm}0.51$	$0.27 {\pm} 0.03$	$0.26 {\pm} 0.04$	$0.25 {\pm} 0.02$	$0.24{\pm}0.01$	$0.23{\pm}0.01$	1.09	1.48	1.92	
Parkinsons	5,875	20	$3.94{\pm}1.31$	$0.00{\pm}0.00$	$0.00{\pm}0.00$	$0.31 {\pm} 0.04$	$0.29 {\pm} 0.04$	$0.29 {\pm} 0.04$	3.21	3.44	6.49	
Pumadyn	8,192	32	$1.00 {\pm} 0.00$	$0.21 {\pm} 0.00$	$0.20{\pm}0.00$	$0.25 {\pm} 0.02$	$0.24{\pm}0.02$	$0.23 {\pm} 0.02$	7.50	7.88	9.77	
PoleTele	15,000	26	$12.6 {\pm} 0.3$	$5.40 {\pm} 0.3$	$4.30 {\pm} 0.2$	$3.42 {\pm} 0.05$	$3.28 {\pm} 0.04$	$3.11{\pm}0.07$	8.02	8.27	26.95	
Elevators	16,599	18	$0.12 {\pm} 0.00$	$0.090 {\pm} 0.001$	$0.089 {\pm} 0.002$	$0.099 {\pm} 0.001$	$0.084{\pm}0.002$	$0.084{\pm}0.002$	8.91	9.16	11.77	
Kin40k	40,000	8	$0.34{\pm}0.01$	$0.19 {\pm} 0.02$	$0.06 {\pm} 0.00$	$0.11 {\pm} 0.01$	$0.05{\pm}0.00$	$0.03{\pm}0.01$	19.82	20.73	24.99	
Protein	45,730	9	$1.64{\pm}1.66$	$0.50{\pm}0.02$	$0.47 {\pm} 0.01$	$0.49 {\pm} 0.01$	$0.46{\pm}0.01$	$0.43{\pm}0.01$	142.8	154.8	144.2	
KEGG	48,827	22	$0.33 {\pm} 0.17$	$0.12 {\pm} 0.01$	$0.12 {\pm} 0.01$	$0.12 {\pm} 0.01$	$0.11 {\pm} 0.00$	$0.10{\pm}0.01$	31.31	34.23	61.01	
CTslice	53,500	385	7.13 ± 0.11	$2.21 {\pm} 0.06$	$0.59{\pm}0.07$	$0.41 {\pm} 0.06$	$0.36{\pm}0.01$	$0.34{\pm}0.02$	36.38	44.28	80.44	
KEGGU	$63,\!608$	27	$0.29 {\pm} 0.12$	$0.12 {\pm} 0.00$	$0.12 {\pm} 0.00$	$0.12 {\pm} 0.00$	$0.11{\pm}0.00$	$0.11{\pm}0.00$	39.54	42.97	41.05	
3Droad	$434,\!874$	3	$12.86 {\pm} 0.09$	$10.34 {\pm} 0.19$	$9.90 {\pm} 0.10$	$7.36 {\pm} 0.07$	$6.91{\pm}0.04$	$6.91{\pm}0.04$	238.7	256.1	292.2	
Song	$515,\!345$	90	$0.55 {\pm} 0.00$	$0.46 {\pm} 0.00$	$0.45 {\pm} 0.00$	$0.45 {\pm} 0.02$	$0.44 {\pm} 0.00$	$0.43{\pm}0.01$	517.7	538.5	589.8	
Buzz	$583,\!250$	77	$0.88{\pm}0.01$	$0.51 {\pm} 0.01$	$0.51 {\pm} 0.01$	$0.49 {\pm} 0.00$	$0.48 {\pm} 0.00$	$0.46{\pm}0.01$	486.4	523.3	769.7	
Electric	2,049,280	11	$0.230 {\pm} 0.000$	$0.053 {\pm} 0.000$	$0.053 {\pm} 0.000$	$0.058 {\pm} 0.002$	$0.050 {\pm} 0.002$	$0.048{\pm}0.002$	3458	3542	4881	

□ 顔の回転角度のラベルを予測する

- The Olivetti face data をランダムに回転、クロップ、サブサンプリング して28×28のデータとしたもの[Salakhutdinov and Hinton (2008)]を利 用
- □ 30人で学習, 10人を予測

- □ ネットワーク構造
 - □ 2層の畳み込み層, 4層の全結合層
 - □ 出力は2次元

Layer	conv1	pool1	conv2	pool2	full3	full4	full5	full6
kernel size	5×5	2×2	5×5	2×2	-	-	-	-
stride	1	2	1	2	-	-	-	-
channel	20	20	50	50	1000	500	50	2

□ 実験結果

■ DBN-GPでは訓練データ12000のうち1000しかラベルを用いていない(残りは教師なし).一方DKLでは全部のラベルを利用.

□ 平均二乗誤差(RMSE)での評価

基底関数のspectral密度(フーリエ変換)の確認
 赤: spectral mixture,黒: RBF

- SMでは、2つのピークを捉えられている.
- □ 一方RBFではこの重要な局所的相関関係を捉えらえていない.
 - □ 間違って多くの特徴を捨ててしまう.

- カーネル共分散行列(テストデータを回転順に並べたもの)
 - □ 左:DKL-SMカーネル
 - □ 中央:DKL-RBFカーネル
 - □ 右:RBFカーネル

- □ DKLは相関がある
 - DKL-RBFは多少拡散している
- RBFはかなり拡散している

→DKLによって,通常のカーネルよりも相関関係をうまく学習できた

MNIST画像の回帰問題

MNIST画像で表されている数字にできるだけ近い実数への写像を学習

□ ネットワーク構造

Layer	conv1	pool1	conv2	pool2	full3	full4	full5	full6
kernel size	5×5	2×2	5×5	2×2	_	-	-	_
stride	1	2	1	2	-	-	-	-
channel	20	20	50	50	1000	500	50	2

Datasets	GP	DBN-GP	CNN	DKL
MNIST	1.25	1.03	0.59	0.53

□ 平均二乗誤差(RMSE)での評価
 □ 他の手法に比べて良い精度

ステップ関数の回帰

- DKLは通常のDeep Learningと違い事後予測分布を生成できる.
 強化学習やベイズ最適化に利用可能
- この問題設定ではステップ関数の回帰を学習する
 - □ 不連続なので難しい.
 - □ 通常のカーネルでは滑らかであることを前提としている.

まとめ

□ 本研究ではスケーラブルなディープカーネルを調査

■ 構造的な特性のあるDLとノンパラメトリックな柔軟性を融合

- 基底カーネルの入力をDLに置き換えて、KILL-GPを利用
 これにより計算量が少なくなった.
- Spectral mixtureカーネルを利用

■ 表現力がさらに高まった.

- □ 通常のカーネルでもDKLによって表現力が高まり,効率が上がる.
- 様々な実験によって通常のGPやDNNよりも精度が高くなることを示した.