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show that the proposed model outperforms state of the art stand-alone deep learning archi-
tectures and Gaussian processes with advanced kernel learning procedures on a wide range
of datasets, demonstrating its practical significance. We achieve scalability while retaining
non-parametric model structure by leveraging the very recent KISS-GP approach (Wilson
and Nickisch, 2015) and extensions in Wilson et al. (2015) for e�ciently representing kernel
functions, to produce scalable deep kernels.

3 Gaussian Processes

We briefly review the predictive equations and marginal likelihood for Gaussian processes
(GPs), and the associated computational requirements, following the notational conven-
tions in Wilson et al. (2015). See, for example, Rasmussen and Williams (2006) for a
comprehensive discussion of GPs.

We assume a dataset D of n input (predictor) vectors X = {x
1

, . . . ,xn}, each of dimension
D, which index an n ⇥ 1 vector of targets y = (y(x

1

), . . . , y(xn))>. If f(x) ⇠ GP(µ, k�),
then any collection of function values f has a joint Gaussian distribution,

f = f(X) = [f(x
1

), . . . , f(xn)]
> ⇠ N (µ,KX,X) , (1)

with a mean vector, µi = µ(xi), and covariance matrix, (KX,X)ij = k�(xi,xj), determined
from the mean function and covariance kernel of the Gaussian process. The kernel, k� , is
parametrized by �. Assuming additive Gaussian noise, y(x)|f(x) ⇠ N (y(x); f(x),�2), the
predictive distribution of the GP evaluated at the n⇤ test points indexed by X⇤, is given by

f⇤|X⇤,X,y,�,�2 ⇠ N (E[f⇤], cov(f⇤)) , (2)

E[f⇤] = µX⇤ +KX⇤,X [KX,X + �2I]�1

y ,

cov(f⇤) = KX⇤,X⇤ �KX⇤,X [KX,X + �2I]�1KX,X⇤ .

KX⇤,X , for example, is an n⇤ ⇥ n matrix of covariances between the GP evaluated at X⇤
and X. µX⇤ is the n⇤ ⇥ 1 mean vector, and KX,X is the n⇥ n covariance matrix evaluated
at training inputs X. All covariance (kernel) matrices implicitly depend on the kernel
hyperparameters �.

GPs with RBF kernels correspond to models which have an infinite basis expansion in a
dual space, and have compelling theoretical properties: these models are universal approxi-
mators, and have prior support to within an arbitrarily small epsilon band of any continuous
function (Micchelli et al., 2006). Indeed the properties of the distribution over functions
induced by a Gaussian process are controlled by the kernel function. For example, the
popular RBF kernel,

k
RBF

(x,x0) = exp(�1

2
||x� x

0||/`2) (3)

encodes the inductive bias that function values closer together in the input space, in the
Euclidean sense, are more correlated. The complexity of the functions in the input space
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Figure 15.2 Left: some functions sampled from a GP prior with SE kernel. Right: some samples from a GP
posterior, after conditioning on 5 noise-free observations. The shaded area represents E [f(x)]±2std(f(x).
Based on Figure 2.2 of (Rasmussen and Williams 2006). Figure generated by gprDemoNoiseFree.

15.2.1 Predictions using noise-free observations

Suppose we observe a training set D = {(xi, fi), i = 1 : N}, where fi = f(xi) is the noise-free
observation of the function evaluated at xi. Given a test set X∗ of size N∗ × D, we want to
predict the function outputs f∗.

If we ask the GP to predict f(x) for a value of x that it has already seen, we want the GP to
return the answer f(x) with no uncertainty. In other words, it should act as an interpolator
of the training data. This will only happen if we assume the observations are noiseless. We will
consider the case of noisy observations below.

Now we return to the prediction problem. By definition of the GP, the joint distribution has
the following form

(
f
f∗

)
∼ N

((
µ
µ∗

)
,

(
K K∗
KT
∗ K∗∗

))
(15.6)

where K = κ(X,X) is N×N , K∗ = κ(X,X∗) is N×N∗, and K∗∗ = κ(X∗,X∗) is N∗×N∗.
By the standard rules for conditioning Gaussians (Section 4.3), the posterior has the following
form

p(f∗|X∗,X, f) = N (f∗|µ∗,Σ∗) (15.7)

µ∗ = µ(X∗) +KT
∗K

−1(f − µ(X)) (15.8)

Σ∗ = K∗∗ −KT
∗K

−1K∗ (15.9)

This process is illustrated in Figure 15.2. On the left we show sample samples from the prior,
p(f |X), where we use a squared exponential kernel, aka Gaussian kernel or RBF kernel. In
1d, this is given by

κ(x, x′) = σ2
f exp(−

1

2ℓ2
(x− x′)2) (15.10)

Here ℓ controls the horizontal length scale over which the function varies, and σ2
f controls the

vertical variation. (We discuss how to estimate such kernel parameters below.) On the right we
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GPの導入 (1)

• y(1) · · · y(N) について同時に書くと,下のように y = Φw と
行列形式で書ける (Φ : 計画行列)

⎛

⎜⎜⎜⎜⎝

y(1)

y(2)

...
y(N)

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

φ1(x(1)) · · · φH(x(1))

φ1(x(2)) · · · φH(x(2))
...

...
φ1(x(N)) · · · φH(x(N))

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

w1

w2
...
...

wH

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

(6)

y Φ w

• 重み w がガウス分布 p(w) = N(0,α−1I)に従っているとすると,
y = Φw もガウス分布に従い,

• 平均 0,分散
⟨yyT ⟩ =

〈
(Φw) (Φw)T

〉
= Φ⟨wwT ⟩ΦT (7)

= α−1ΦΦT の正規分布となる
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= Φ⟨wwT ⟩ΦT (7)

= α−1ΦΦT の正規分布となる
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GPの導入 (2)

p(y) = N(y|0,α−1ΦΦT ) (8)

は,どんな入力 {xn}Nn=1 についても成り立つ→ガウス過程の定義
• どんな入力 (x1,x2, · · · ,xN )についても,対応する出力
y = (y1, y2, · · · , yN )がガウス分布に従うとき, p(y)はガウス過
程に従う という.
− ガウス過程 =無限次元のガウス分布
− ガウス分布の周辺化はまたガウス分布なので,実際にはデー
タのある所だけの有限次元

• K = α−1ΦΦT の要素であるカーネル関数

k(x,x′) = α−1φ(x)Tφ(x′) (9)

だけでガウス分布が定まる
− k(x,x′)は xと x′の距離 ; 入力 xが近い→出力 y が近い
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GPの導入 (3)

• 実際には,観測値にはノイズ ϵが乗っている
{
y = wTφ(x) + ϵ

ϵ ∼ N(0,β−1I)
=⇒ p(y|f) = N(wTφ(x),β−1I) (10)

• 途中の f = wTφ(x)を積分消去

p(y|x) =
∫

p(y|f)p(f |x)df (11)

= N(0,C) (12)

− 二つの独立なGaussianの畳み込みなので, Cの要素は共分散
の和:

C(xi,xj) = k(xi,xj) + β−1δ(i, j). (13)

− GPは,カーネル関数 k(x,x′)とハイパーパラメータ α,β

だけで表すことができる.
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GPの予測

• 新しい入力 ynew とこれまでの y の結合分布がまたGaussianに
なるので,

p(ynew|xnew,X,y, θ) (17)

=
p((y, ynew)|(X,xnew), θ)

p(y|X, θ)
(18)

∝ exp

⎛

⎝−1

2
([y, ynew]

[
K k

kT k

]−1 [
y

ynew

]
− yTK−1y)

⎞

⎠

(19)

∼ N(kTK−1y, k − kTK−1k). (20)

ここで
− K = [k(x,x′)].
− k = (k(xnew,x1), · · · , k(xnew,xN )).
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Figure 6.7 Illustration of the mechanism of
Gaussian process regression for
the case of one training point and
one test point, in which the red el-
lipses show contours of the joint dis-
tribution p(t1, t2). Here t1 is the
training data point, and condition-
ing on the value of t1, correspond-
ing to the vertical blue line, we ob-
tain p(t2|t1) shown as a function of
t2 by the green curve. t1

t2

m(x2)

−1 0 1

−1

0

1

framework. However, an advantage of a Gaussian processes viewpoint is that we
can consider covariance functions that can only be expressed in terms of an infinite
number of basis functions.

For large training data sets, however, the direct application of Gaussian process
methods can become infeasible, and so a range of approximation schemes have been
developed that have better scaling with training set size than the exact approach
(Gibbs, 1997; Tresp, 2001; Smola and Bartlett, 2001; Williams and Seeger, 2001;
Csató and Opper, 2002; Seeger et al., 2003). Practical issues in the application of
Gaussian processes are discussed in Bishop and Nabney (2008).

We have introduced Gaussian process regression for the case of a single tar-
get variable. The extension of this formalism to multiple target variables, known
as co-kriging (Cressie, 1993), is straightforward. Various other extensions of Gaus-Exercise 6.23

Figure 6.8 Illustration of Gaussian process re-
gression applied to the sinusoidal
data set in Figure A.6 in which the
three right-most data points have
been omitted. The green curve
shows the sinusoidal function from
which the data points, shown in
blue, are obtained by sampling and
addition of Gaussian noise. The
red line shows the mean of the
Gaussian process predictive distri-
bution, and the shaded region cor-
responds to plus and minus two
standard deviations. Notice how
the uncertainty increases in the re-
gion to the right of the data points.
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is determined by the interpretable length-scale hyperparameter `. Shorter length-scales
correspond to functions which vary more rapidly with the inputs x.

The structure of our data is discovered through learning interpretable kernel hyperparam-
eters. The marginal likelihood of the targets y, the probability of the data conditioned
only on kernel hyperparameters �, provides a principled probabilistic framework for kernel
learning:

log p(y|�, X) / �[y>(K� + �2I)�1

y + log |K� + �2I|] , (4)

where we have used K� as shorthand for KX,X given �. Note that the expression for the log
marginal likelihood in Eq. (4) pleasingly separates into automatically calibrated model fit
and complexity terms (Rasmussen and Ghahramani, 2001). Kernel learning can be achieved
by optimizing Eq. (4) with respect to �.

The computational bottleneck for inference is solving the linear system (KX,X + �2I)�1

y,
and for kernel learning is computing the log determinant log |KX,X + �2I| in the marginal
likelihood. The standard approach is to compute the Cholesky decomposition of the n ⇥
n matrix KX,X , which requires O(n3) operations and O(n2) storage. After inference is
complete, the predictive mean costs O(n), and the predictive variance costs O(n2), per test
point x⇤.

4 Deep Kernel Learning

In this section we show how we can contruct kernels which encapsulate the expressive power
of deep architectures, and how to learn the properties of these kernels as part of a scalable
probabilistic Gaussian process framework.

Specifically, starting from a base kernel k(xi,xj |✓) with hyperparameters ✓, we transform
the inputs (predictors) x as

k(xi,xj |✓) ! k(g(xi,w), g(xj ,w)|✓,w) , (5)

where g(x,w) is a non-linear mapping given by a deep architecture, such as a deep con-
volutional network, parametrized by weights w. The popular RBF kernel (Eq. (3)) is a
sensible choice of base kernel k(xi,xj |✓). For added flexibility, we also propose to use
spectral mixture base kernels (Wilson and Adams, 2013):

k
SM

(x,x0|✓) =
QX

q=1

aq
|⌃q| 12
(2⇡)

D
2

exp

✓
�1

2
||⌃

1
2
q (x� x

0)||2
◆
coshx� x

0, 2⇡µqi . (6)

The parameters of the spectral mixture kernel ✓ = {aq,⌃q,µq} are mixture weights, band-
widths (inverse length-scales), and frequencies. The spectral mixture (SM) kernel, which
forms an expressive basis for all stationary covariance functions, can discover quasi-periodic
stationary structure with an interpretable and succinct representation, while the deep learn-
ing transformation g(x,w) captures non-stationary and hierarchical structure.
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Figure 1: Deep Kernel Learning: A Gaussian process with a deep kernel maps D dimensional
inputs x through L parametric hidden layers followed by a hidden layer with an infinite number of
basis functions, with base kernel hyperparameters ✓. Overall, a Gaussian process with a deep kernel
produces a probabilistic mapping with an infinite number of adaptive basis functions parametrized
by � = {w,✓}. All parameters � are learned through the marginal likelihood of the Gaussian
process.

We use the deep kernel of Eq. (5) as the covariance function of a Gaussian process to model
data D = {xi,yi}ni=1

. Conditioned on all kernel hyperparameters, we can interpret our
model as applying a Gaussian process with base kernel k✓ to the final hidden layer of a
deep network. Since a GP with (RBF or SM) base kernel k✓ corresponds to an infinite basis
function representation, our network e↵ectively has a hidden layer with an infinite number
of hidden units. The overall model is shown in Figure 1.

We emphasize, however, that we jointly learn all deep kernel hyperparameters, � = {w,✓},
which include w, the weights of the network, and ✓ the parameters of the base kernel, by
maximizing the log marginal likelihood L of the Gaussian process (see Eq. (4)). Indeed
compartmentalizing our model into a base kernel and deep architecture is for pedagogical
clarity. When applying a Gaussian process one can use our deep kernel, which operates as a
single unit, as a drop-in replacement for e.g., standard ARD or Matérn kernels (Rasmussen
and Williams, 2006), since learning and inference follow the same procedures.

For kernel learning, we use the chain rule to compute derivatives of the log marginal likeli-
hood with respect to the deep kernel hyperparameters:

@L
@✓

=
@L
@K�

@K�

@✓
,

@L
@w

=
@L
@K�

@K�

@g(x,w)

@g(x,w)

@w
.

The implicit derivative of the log marginal likelihood with respect to our n⇥n data covari-
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Figure 1: Deep Kernel Learning: A Gaussian process with a deep kernel maps D dimensional
inputs x through L parametric hidden layers followed by a hidden layer with an infinite number of
basis functions, with base kernel hyperparameters ✓. Overall, a Gaussian process with a deep kernel
produces a probabilistic mapping with an infinite number of adaptive basis functions parametrized
by � = {w,✓}. All parameters � are learned through the marginal likelihood of the Gaussian
process.

We use the deep kernel of Eq. (5) as the covariance function of a Gaussian process to model
data D = {xi,yi}ni=1

. Conditioned on all kernel hyperparameters, we can interpret our
model as applying a Gaussian process with base kernel k✓ to the final hidden layer of a
deep network. Since a GP with (RBF or SM) base kernel k✓ corresponds to an infinite basis
function representation, our network e↵ectively has a hidden layer with an infinite number
of hidden units. The overall model is shown in Figure 1.

We emphasize, however, that we jointly learn all deep kernel hyperparameters, � = {w,✓},
which include w, the weights of the network, and ✓ the parameters of the base kernel, by
maximizing the log marginal likelihood L of the Gaussian process (see Eq. (4)). Indeed
compartmentalizing our model into a base kernel and deep architecture is for pedagogical
clarity. When applying a Gaussian process one can use our deep kernel, which operates as a
single unit, as a drop-in replacement for e.g., standard ARD or Matérn kernels (Rasmussen
and Williams, 2006), since learning and inference follow the same procedures.

For kernel learning, we use the chain rule to compute derivatives of the log marginal likeli-
hood with respect to the deep kernel hyperparameters:
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=
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@K�

@✓
,

@L
@w

=
@L
@K�

@K�

@g(x,w)

@g(x,w)

@w
.

The implicit derivative of the log marginal likelihood with respect to our n⇥n data covari-
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ance matrix K� is given by

@L
@K�

=
1

2
(K�1

� yy

>K�1

� �K�1

� ) , (7)

where we have absorbed the noise covariance �2I into our covariance matrix, and treat it as
part of the base kernel hyperparameters ✓. @K�

@✓ are the derivatives of the deep kernel with
respect to the base kernel hyperparameters (such as length-scale), conditioned on the fixed

transformation of the inputs g(x,w). Similarly, @K�

@g(x,w)

are the implicit derivatives of the
deep kernel with respect to g, holding ✓ fixed. The derivatives with respect to the weight
variables @g(x,w)

@w are computed using standard backpropagation.

For scalability, we replace all instances of K� with the KISS-GP covariance matrix (Wilson
and Nickisch, 2015; Wilson et al., 2015)

K� ⇡ MKdeep

U,U M> := K
KISS

, (8)

where M is a sparse matrix of interpolation weights, containing only 4 non-zero entries per
row for local cubic interpolation, and KU,U is a covariance matrix created from our deep
kernel, evaluated overm latent inducing points U = [ui]i=1...m. We place the inducing points
over a regular multidimensional lattice, and exploit the resulting decomposition ofKU,U into
a Kronecker product of Toeplitz matrices for extremely fast matrix vector multiplications
(MVMs), without requiring any grid structure in the data inputs X or the transformed
inputs g(x,w). Because KISS-GP operates by creating an approximate kernel which admits
fast computations, and is independent from a specific inference and learning procedure, we
can view the KISS approximation applied to our deep kernels as a stand-alone kernel,
k(x, z) = m

>
x

Kdeep

U,U m

z

, which can be combined with Gaussian processes or other kernel
machines for scalable learning.
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For inference we solveK�1

KISS

y using linear conjugate gradients (LCG), an iterative procedure
for solving linear systems which only involves matrix vector multiplications (MVMs). The
number of iterations required for convergence to within machine precision is j ⌧ n, and in
practice j depends on the conditioning of the KISS-GP covariance matrix rather than the
number of training points n. For estimating the log determinant in the marginal likelihood
we follow the approach described in Wilson and Nickisch (2015) with extensions in Wilson
et al. (2015).

KISS-GP training scales as O(n+h(m)) (where h(m) is typically close to linear inm), versus
conventional scalable GP approaches which require O(m2n+m3) (Quiñonero-Candela and
Rasmussen, 2005) computations and need m ⌧ n for tractability, which results in severe
deteriorations in predictive performance. The ability to have large m ⇡ n allows KISS-GP
to have near-exact accuracy in its approximation (Wilson and Nickisch, 2015), retaining a
non-parametric representation, while providing linear scaling in n and O(1) time per test
point prediction (Wilson et al., 2015). We empirically demonstrate this scalability and
accuracy in our experiments of section 5.

5 Experiments

We evaluate the proposed deep kernel learning method on a wide range of regression prob-
lems, including a large and diverse collection of regression tasks from the UCI repository
(section 5.1), orientation extraction from face patches (section 5.2), magnitude recovery of
handwritten digits (section 5.3), and step function recovery (section 5.4). We show that
the proposed algorithm substantially outperforms Gaussian processes with expressive ker-
nel learning approaches, and deep neural networks, without any significant increases in
computational overhead.

All experiments were performed on a Linux machine with eight 4.0GHz CPU cores and 32GB
RAM. We implemented DNNs based on Ca↵e (Jia et al., 2014), a general deep learning
platform, and KISS-GP (Wilson and Nickisch, 2015; Wilson et al., 2015) leveraging GPML
(Rasmussen and Nickisch, 2010) 1.

For our deep kernel learning model, we first train a deep neural network using SGD with the
squared loss objective, and rectified linear activation functions. After the neural network
has been pre-trained, a KISS-GP model was fitted using the top-level features of the DNN
model as inputs. Using this pre-training initialization, our joint deep kernel learning (DKL)
model of section 4 is then trained by optimizing all the hyperparameters � of our deep
kernel, by backpropagating derivatives through the marginal likelihood of the Gaussian
process (see Eq. 7).

1

www.gaussianprocess.org/gpml

9

For inference we solveK�1

KISS

y using linear conjugate gradients (LCG), an iterative procedure
for solving linear systems which only involves matrix vector multiplications (MVMs). The
number of iterations required for convergence to within machine precision is j ⌧ n, and in
practice j depends on the conditioning of the KISS-GP covariance matrix rather than the
number of training points n. For estimating the log determinant in the marginal likelihood
we follow the approach described in Wilson and Nickisch (2015) with extensions in Wilson
et al. (2015).

KISS-GP training scales as O(n+h(m)) (where h(m) is typically close to linear inm), versus
conventional scalable GP approaches which require O(m2n+m3) (Quiñonero-Candela and
Rasmussen, 2005) computations and need m ⌧ n for tractability, which results in severe
deteriorations in predictive performance. The ability to have large m ⇡ n allows KISS-GP
to have near-exact accuracy in its approximation (Wilson and Nickisch, 2015), retaining a
non-parametric representation, while providing linear scaling in n and O(1) time per test
point prediction (Wilson et al., 2015). We empirically demonstrate this scalability and
accuracy in our experiments of section 5.

5 Experiments

We evaluate the proposed deep kernel learning method on a wide range of regression prob-
lems, including a large and diverse collection of regression tasks from the UCI repository
(section 5.1), orientation extraction from face patches (section 5.2), magnitude recovery of
handwritten digits (section 5.3), and step function recovery (section 5.4). We show that
the proposed algorithm substantially outperforms Gaussian processes with expressive ker-
nel learning approaches, and deep neural networks, without any significant increases in
computational overhead.

All experiments were performed on a Linux machine with eight 4.0GHz CPU cores and 32GB
RAM. We implemented DNNs based on Ca↵e (Jia et al., 2014), a general deep learning
platform, and KISS-GP (Wilson and Nickisch, 2015; Wilson et al., 2015) leveraging GPML
(Rasmussen and Nickisch, 2010) 1.

For our deep kernel learning model, we first train a deep neural network using SGD with the
squared loss objective, and rectified linear activation functions. After the neural network
has been pre-trained, a KISS-GP model was fitted using the top-level features of the DNN
model as inputs. Using this pre-training initialization, our joint deep kernel learning (DKL)
model of section 4 is then trained by optimizing all the hyperparameters � of our deep
kernel, by backpropagating derivatives through the marginal likelihood of the Gaussian
process (see Eq. 7).

1

www.gaussianprocess.org/gpml

9

For inference we solveK�1

KISS

y using linear conjugate gradients (LCG), an iterative procedure
for solving linear systems which only involves matrix vector multiplications (MVMs). The
number of iterations required for convergence to within machine precision is j ⌧ n, and in
practice j depends on the conditioning of the KISS-GP covariance matrix rather than the
number of training points n. For estimating the log determinant in the marginal likelihood
we follow the approach described in Wilson and Nickisch (2015) with extensions in Wilson
et al. (2015).

KISS-GP training scales as O(n+h(m)) (where h(m) is typically close to linear inm), versus
conventional scalable GP approaches which require O(m2n+m3) (Quiñonero-Candela and
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Table 1: Comparative RMSE performance and runtime on UCI regression datasets, with n training points and d the input
dimensions. The results are averaged over 5 equal partitions (90% train, 10% test) of the data ± one standard deviation. The
best denotes the best-performing kernel according to Yang et al. (2015) (note that often the best performing kernel is GP-SM).
Following Yang et al. (2015), as exact Gaussian processes are intractable on the large data used here, the Fastfood finite basis
function expansions are used for approximation in GP (RBF, SM, Best). We verified on datasets with n < 10, 000 that exact
GPs with RBF kernels provide comparable performance to the Fastfood expansions. For datasets with n < 6, 000 we used a
fully-connected DNN with a [d-1000-500-50-2] architecture, and for n > 6000 we used a [d-1000-1000-500-50-2] architecture. We
consider scalable deep kernel learning (DKL) with RBF and SM base kernels. For the SM base kernel, we set Q = 4 for datasets
with n < 10, 000 training instances, and use Q = 6 for larger datasets.

Datasets n d

RMSE Runtime(s)

GP

DNN

DKL

DNN

DKL

RBF SM best RBF SM RBF SM

Gas 2,565 128 0.21±0.07 0.14±0.08 0.12±0.07 0.11±0.05 0.11±0.05 0.09±0.06 7.43 7.80 10.52

Skillcraft 3,338 19 1.26±3.14 0.25±0.02 0.25±0.02 0.25±0.00 0.25±0.00 0.25±0.00 15.79 15.91 17.08

SML 4,137 26 6.94±0.51 0.27±0.03 0.26±0.04 0.25±0.02 0.24±0.01 0.23±0.01 1.09 1.48 1.92

Parkinsons 5,875 20 3.94±1.31 0.00±0.00 0.00±0.00 0.31±0.04 0.29±0.04 0.29±0.04 3.21 3.44 6.49

Pumadyn 8,192 32 1.00±0.00 0.21±0.00 0.20±0.00 0.25±0.02 0.24±0.02 0.23±0.02 7.50 7.88 9.77

PoleTele 15,000 26 12.6±0.3 5.40±0.3 4.30±0.2 3.42±0.05 3.28±0.04 3.11±0.07 8.02 8.27 26.95

Elevators 16,599 18 0.12±0.00 0.090±0.001 0.089±0.002 0.099±0.001 0.084±0.002 0.084±0.002 8.91 9.16 11.77

Kin40k 40,000 8 0.34±0.01 0.19±0.02 0.06±0.00 0.11±0.01 0.05±0.00 0.03±0.01 19.82 20.73 24.99

Protein 45,730 9 1.64±1.66 0.50±0.02 0.47±0.01 0.49±0.01 0.46±0.01 0.43±0.01 142.8 154.8 144.2

KEGG 48,827 22 0.33±0.17 0.12±0.01 0.12±0.01 0.12±0.01 0.11±0.00 0.10±0.01 31.31 34.23 61.01

CTslice 53,500 385 7.13±0.11 2.21±0.06 0.59±0.07 0.41±0.06 0.36±0.01 0.34±0.02 36.38 44.28 80.44

KEGGU 63,608 27 0.29±0.12 0.12±0.00 0.12±0.00 0.12±0.00 0.11±0.00 0.11±0.00 39.54 42.97 41.05

3Droad 434,874 3 12.86±0.09 10.34±0.19 9.90±0.10 7.36±0.07 6.91±0.04 6.91±0.04 238.7 256.1 292.2

Song 515,345 90 0.55±0.00 0.46±0.00 0.45±0.00 0.45±0.02 0.44±0.00 0.43±0.01 517.7 538.5 589.8

Buzz 583,250 77 0.88±0.01 0.51±0.01 0.51±0.01 0.49±0.00 0.48±0.00 0.46±0.01 486.4 523.3 769.7

Electric 2,049,280 11 0.230±0.000 0.053±0.000 0.053±0.000 0.058±0.002 0.050±0.002 0.048±0.002 3458 3542 4881
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Figure 2: Left: Randomly sampled examples of the training and test data. Right: The two
dimensional outputs of the convolutional network on a set of test cases. Each point is shown using
a line segment that has the same orientation as the input face.

5.1 UCI regression tasks

We consider a large set of UCI regression problems of varying sizes and properties. Table 1
reports test root mean squared error (RMSE) for 1) many scalable Gaussian process kernel
learning methods based on Fastfood (Yang et al., 2015); 2) stand-alone deep neural networks
(DNNs); and 3) our proposed combined deep kernel learning (DKL) model using both RBF
and SM base kernels.

For smaller datasets, where the number of training examples n < 6, 000, we used a fully-
connected neural network with a d-1000-500-50-2 architecture; for larger datasets we used
a d-1000-1000-500-50-2 architecture2.

Table 1 shows that on most of the datasets, our DKL method strongly outperforms not
only Gaussian processes with the standard RBF kernel, but also the best-performing kernels
selected from a wide range of alternative kernel learning procedures (Yang et al., 2015).

We further compared DKL to stand-alone deep neural networks which have the exact same
architecture as the DNN component of DKL. By combining KISS-GP with DNNs as part of a
joint DKL procedure, we obtain consistently better results than stand-alone deep learning
over all 16 datasets. Moreover, using a spectral mixture base kernel (Eq. (6)) to create
a deep kernel provides notable additional performance improvements. It is interesting to
observe that by e↵ectively learning the salient features from raw data, plain DNNs generally
achieve competitive performance compared to expressive Gaussian processes. Combining
the complementary advantages of these approaches into scalable deep kernels consistently
brings substantial additional performance gains.

We next investigate the runtime of DKL. Table 1, right panel, compares DKL with a
stand-alone DNN in terms of runtime for evaluating the objective and derivatives (i.e. one
forward and backpropagation pass for DNN; one computation of the marginal likelihood and
all relevant derivatives for DNN-KISSGP). We see that in addition to improving accuracy,

2We found [d-1000-1000-500-50] architectures provide a similar level of performance, but
scalable Kronecker algebra is most e↵ective if the network maps into D  5 dimensional
spaces.
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A Appendix

A.1 Convolutional network architecture

Table 3 lists the architecture of the convolutional networks used in the tasks of face ori-
entation extraction (section 5.2) and digit magnitude extraction (section 5.3). The CNN
architecture is original from the LeNet LeCun et al. (1998) (for digit classification) and
adapted to the above tasks with one or two more fully-connected layers for feature trans-
formation.

Layer conv1 pool1 conv2 pool2 full3 full4 full5 full6

kernel size 5⇥5 2⇥2 5⇥5 2⇥2 - - - -
stride 1 2 1 2 - - - -
channel 20 20 50 50 1000 500 50 2

Table 3: The architecture of the convolutional network used in face orientation extraction.
The CNN used in the MNIST digit magnitude regression has a similar architecture except
that the full3 layer is omitted. Both pool1 and pool2 are max pooling layers. ReLU layer is
placed after full3 and full4.
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Table 2: RMSE performance on the Olivetti and MNIST. For comparison, in the face orientation
extraction, we trained DKL on the same amount (12,000) of training instances as with DBN-GP, but
used all labels; whereas DBN-GP (as with GP) scaled to only 1,000 labeled images and modeled the
remaining data through unsupervised pretraining of DBN. We used RBF base kernel within GPs.

Datasets GP DBN-GP CNN DKL

Olivetti 16.33 6.42 6.34 6.07

MNIST 1.25 1.03 0.59 0.53

combining KISS-GP with DNNs for deep kernels introduces only negligible runtime costs:
KISS-GP imposes an additional runtime of about 10% (one order of magnitude less than)
the runtime a DNN typically requires. Overall, these results show the general applicability
and practical significance of our scalable DKL approach.

5.2 Face orientation extraction

We now consider the task of predicting the orientation of a face extracted from a gray-
scale image patch, explored in Salakhutdinov and Hinton (2008). We investigate our DKL
procedure for e�ciently learning meaningful representations from high-dimensional highly-
structured image data.

The Olivetti face data set contains ten 64⇥64 images of forty di↵erent people, for 400
images total. Following Salakhutdinov and Hinton (2008), we constructed datasets of 28⇥28
images by randomly rotating (uniformly from �90� to +90�), cropping, and subsampling
the original 400 images. We then randomly select 30 people uniformly and collect their
images as training data, while using the images of the remaining 10 people as test data.
Figure 2 shows randomly sampled examples from the training and test data.

For training DKL on the Olivetti face patches we used a convolutional network consisting
of 2 convolutional layers followed by 4 fully-connected layers, mapping a face patch to
a 2-dimensional feature vector, with a SM base kernel. We describe this convolutional
architecture in detail in the appendix.

Table 2 shows the RMSE of the predicted face orientations using four models. The DBN-
GP model, proposed by Salakhutdinov and Hinton (2008), first extracts features from raw
data using a Deep Belief Network (DBN), and then applies a Gaussian process with an
RBF kernel. However, their approach could only handle up to a few thousand labelled
datapoints, due to the O(n3) complexity of standard Gaussian processes. The remaining
data were modeled through unsupervised learning of a DBN, leaving the large amount of
available labels unused.

Our proposed deep kernel methods, by contrast, scale linearly with the size of training
data, and are capable of directly modeling the full labeled data to accurately recover salient
patterns. Figure 2, right panel, shows that the deep kernel discovers features essential for
orientation prediction, while filtering out irrelevant factors such as identities and scales.
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Figure 3: Left: RMSE vs. n, the number of training examples. Middle: Runtime vs n. Right:
Total training time vs n. The dashed line in black indicates a slope of 1. Convolutional networks
are used within DKL. We set Q = 4 for the SM kernel.

Figure 3, left panel, further validates the benefit of scaling to large data. As more training
data are used, our model continues to increase in accuracy. Indeed, it is the large datasets
that will provide the greatest opportunities for our model to discover expressive statistical
representations.

In Figure 4 we show the spectral density (the Fourier transform) of the base kernels learned
through our deep kernel learning method. The expressive spectral mixture (SM) kernel
discovers a structure with two peaks in the frequency domain. The RBF kernel is only
able to use a single Gaussian in the spectral domain, centred at the origin. In an attempt
to capture the significant mass near a frequency of 25, the RBF kernel spectral density
spreads itself across the whole frequency domain, missing the important local correlations
near a frequency s = 0, thus erroneously discarding much of the network features as white
noise, since a broad spectral peak corresponds to a short length-scale. This result provides
intuition for why spectral mixture base kernels generally perform much better than RBF
base kernels, despite the flexibility of the deep architecture.
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that will provide the greatest opportunities for our model to discover expressive statistical
representations.

In Figure 4 we show the spectral density (the Fourier transform) of the base kernels learned
through our deep kernel learning method. The expressive spectral mixture (SM) kernel
discovers a structure with two peaks in the frequency domain. The RBF kernel is only
able to use a single Gaussian in the spectral domain, centred at the origin. In an attempt
to capture the significant mass near a frequency of 25, the RBF kernel spectral density
spreads itself across the whole frequency domain, missing the important local correlations
near a frequency s = 0, thus erroneously discarding much of the network features as white
noise, since a broad spectral peak corresponds to a short length-scale. This result provides
intuition for why spectral mixture base kernels generally perform much better than RBF
base kernels, despite the flexibility of the deep architecture.
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Figure 4: The log spectral densities of the DKL-SM and DKL-SE base kernels are in black and red,
respectively.

We further see the benefit of an SM base kernel in Figure 5, where we show the learned
covariance matrices constructed from the whole deep kernels (composition of base kernel
and deep architecture) for RBF and SM base kernels. The covariance matrix is evaluated
on a set of test inputs, where we randomly sample 400 instances from the test set and sort
them in terms of the orientation angles of the input faces. We see that the deep kernels with
both RBF and SM base kernels discover that faces with similar rotation angles are highly
correlated, concentrating their largest entries on the diagonal (i.e., face pairs with similar
orientations). Deep kernel learning with an SM base kernel captures these correlations more
strongly than the RBF base kernel, which is somewhat more di↵use.

In Figure 5, right panel, we also show the learned covariance matrix for an RBF kernel
with a standard Gaussian process applied to the raw data inputs. We see that the entries
are very di↵use. In essence, through deep kernel learning, we can learn a metric where
faces with similar rotation angles are highly correlated, and thus overcome the fundamental
limitations of a Euclidean distance metric (used by standard kernels), where similar rotation
angles are not particularly correlated, regardless of what hyper-parameters are learned with
Euclidean kernels.

We next measure the scalability of our model. Figure 3, middle panel, shows the runtimes
in seconds, as a function of training instances, for evaluating the objective and any relevant
derivatives. We see that, with the scalable KISS-GP, the joint model achieves a roughly
linear asymptotic scaling, with a slope of 1. In Figure 3, right panel, we show how the
total training time (i.e., the time for CNN pre-training plus the time for DKL with CNN
architecture joint training) changes with varying the data size n. In addition to the linear
scaling which is necessary for modeling large data, the added time in combining KISS-GP
with CNNs is reasonable, especially considering the gains in performance and expressive
power.
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Figure 5: Left: The induced covariance matrix using DKL-SM kernel on a set of test cases, where
the test samples are ordered according to the orientations of the input faces. Middle: The respective
covariance matrix using DKL-RBF kernel. Right: The respective covariance matrix using regular
RBF kernel. The models are trained with n = 12, 000. We set Q = 4 for the SM base kernel.

5.3 Digit magnitude extraction

We map images of handwritten digits to a single real-value that is as close as possible to
the integer represented by the digit in the image, as in Salakhutdinov and Hinton (2008).
The MNIST digit dataset contains 60,000 training data and 10,000 test 28 ⇥ 28 images of
ten handwritten digits (0 to 9). We used a convolutional neural network with a similar
architecture as the LeNet (LeCun et al., 1998) (detailed in the appendix). Table 2 shows
that a CNN performs considerably better than GP and DBN-GP, and DKL (with CNN
architecture) further improves over CNN.

5.4 Step function recovery

We have so far considered RMSE for comparison to alternative methods where posterior
predictive distributions are not readily available, or on problems where RMSE has histor-
ically been used as a benchmark. However, an advantage of DKL over stand-alone deep
architectures is the ability to naturally produce a posterior predictive distribution, which is
especially useful in applications such as reinforcement learning and Bayesian optimisation.
In Figure 6, we consider an example where we use DKL to learn the posterior predictive
distribution for a step function with many challenging discontinuities. This problem is par-
ticularly di�cult for conventional Gaussian process approaches, due to strong smoothness
assumptions intrinsic to popular kernels.

GPs with SM kernels improve upon RBF kernels, but neither can properly adapt to the
many sharp changes in covariance structure. By contrast, the DKL-SM model accurately
encodes the discontinuities of the function, and has reasonable uncertainty over the whole
domain.

14



MNISTêŏ/�Ķ¯¾
¤ MNISTêŏ*¨�@)�?¹ě.*�?%�×��¹2/ėŏC¦Ľ

¤ \WZq�LĊď

¤ �đÎâ

¤ »ŁÖċŖĕ(RMSE)*/ĦØ
¤ Ĺ/��.ā3)ą�ł�

Table 2: RMSE performance on the Olivetti and MNIST. For comparison, in the face orientation
extraction, we trained DKL on the same amount (12,000) of training instances as with DBN-GP, but
used all labels; whereas DBN-GP (as with GP) scaled to only 1,000 labeled images and modeled the
remaining data through unsupervised pretraining of DBN. We used RBF base kernel within GPs.

Datasets GP DBN-GP CNN DKL

Olivetti 16.33 6.42 6.34 6.07

MNIST 1.25 1.03 0.59 0.53

combining KISS-GP with DNNs for deep kernels introduces only negligible runtime costs:
KISS-GP imposes an additional runtime of about 10% (one order of magnitude less than)
the runtime a DNN typically requires. Overall, these results show the general applicability
and practical significance of our scalable DKL approach.

5.2 Face orientation extraction

We now consider the task of predicting the orientation of a face extracted from a gray-
scale image patch, explored in Salakhutdinov and Hinton (2008). We investigate our DKL
procedure for e�ciently learning meaningful representations from high-dimensional highly-
structured image data.

The Olivetti face data set contains ten 64⇥64 images of forty di↵erent people, for 400
images total. Following Salakhutdinov and Hinton (2008), we constructed datasets of 28⇥28
images by randomly rotating (uniformly from �90� to +90�), cropping, and subsampling
the original 400 images. We then randomly select 30 people uniformly and collect their
images as training data, while using the images of the remaining 10 people as test data.
Figure 2 shows randomly sampled examples from the training and test data.

For training DKL on the Olivetti face patches we used a convolutional network consisting
of 2 convolutional layers followed by 4 fully-connected layers, mapping a face patch to
a 2-dimensional feature vector, with a SM base kernel. We describe this convolutional
architecture in detail in the appendix.

Table 2 shows the RMSE of the predicted face orientations using four models. The DBN-
GP model, proposed by Salakhutdinov and Hinton (2008), first extracts features from raw
data using a Deep Belief Network (DBN), and then applies a Gaussian process with an
RBF kernel. However, their approach could only handle up to a few thousand labelled
datapoints, due to the O(n3) complexity of standard Gaussian processes. The remaining
data were modeled through unsupervised learning of a DBN, leaving the large amount of
available labels unused.

Our proposed deep kernel methods, by contrast, scale linearly with the size of training
data, and are capable of directly modeling the full labeled data to accurately recover salient
patterns. Figure 2, right panel, shows that the deep kernel discovers features essential for
orientation prediction, while filtering out irrelevant factors such as identities and scales.
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A Appendix

A.1 Convolutional network architecture

Table 3 lists the architecture of the convolutional networks used in the tasks of face ori-
entation extraction (section 5.2) and digit magnitude extraction (section 5.3). The CNN
architecture is original from the LeNet LeCun et al. (1998) (for digit classification) and
adapted to the above tasks with one or two more fully-connected layers for feature trans-
formation.

Layer conv1 pool1 conv2 pool2 full3 full4 full5 full6

kernel size 5⇥5 2⇥2 5⇥5 2⇥2 - - - -
stride 1 2 1 2 - - - -
channel 20 20 50 50 1000 500 50 2

Table 3: The architecture of the convolutional network used in face orientation extraction.
The CNN used in the MNIST digit magnitude regression has a similar architecture except
that the full3 layer is omitted. Both pool1 and pool2 are max pooling layers. ReLU layer is
placed after full3 and full4.
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Figure 6: Recovering a step function. We show the predictive mean and 95% of the predictive
probability mass for regular GPs with RBF and SM kernels, and DKL with SM base kernel. We set
Q = 4 for SM kernels.

6 Discussion

We have explored scalable deep kernels, which combine the structural properties of deep
architectures with the non-parametric flexibility of kernel methods. In particular, we trans-
form the inputs of a base kernel with a deep architecture, and then leverage local kernel in-
terpolation, inducing points, and structure exploiting algebra (e.g., Kronecker and Toeplitz
methods) for a scalable kernel representation. These scalable kernels can then be combined
with Gaussian process inference and learning procedures for O(n) training and O(1) testing
time. Moreover, we use spectral mixture covariances as a base kernel, which provides a
significant additional boost in representational power. Overall, our scalable deep kernels
can be used in place of standard kernels, following the same inference and learning proce-
dures, but with benefits in expressive power and e�ciency. We show on a wide range of
experiments the general applicability and practical significance of our approach, consistently
outperforming scalable GPs with expressive kernels, and stand-alone DNNs.

A major challenge in developing expressive kernel learning approaches is the Euclidean and
absolute distance based metrics which are pervasive in most families of kernel functions,
such as the ARD and Matérn kernels. Indeed, although intuitive in some cases, one cannot
expect Euclidean and absolute distance as measures of similarity to be generally applicable,
and they are especially problematic in high dimensional input spaces (Aggarwal et al.,
2001). Modern approaches attempt to learn a flexible parametric family, for example,
through weighted combinations of known kernels (e.g., Gönen and Alpaydın, 2011), but are
still fundamentally limited to these standard notions of distance. As we have seen in the
Olivetti faces examples, our approach allows for the whole functional form of the metric to
be learned in a flexible manner, through expressive transformations of the input space. We
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