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of non-linearities to the model makes learning more difficult. Raiko & Tornio (2009) explored
ways of using linear approximations and non-linear dynamical factor analysis in order to overcome
these difficulties. However, their methods do not handle long-range temporal interactions and scale
quadratically with the latent dimension.

We show that recently developed techniques in variational inference (Rezende et al. , 2014; Kingma
& Welling, 2013) can be adopted to learn a broad class of the Kalman filters that exist in the liter-
ature using a single algorithm. Furthermore, using deep neural networks, we can enhance Kalman
filters with arbitrarily complex transition dynamics and emission distributions. We show that we can
tractably learn such models by optimizing a bound on the likelihood of the data.

Kalman filters have been used extensively for optimal control, where the model attempts to capture
how actions affect the observations, precipitating the task of choosing the best control signal towards
a given objective. We use Kalman filters for a different yet closely related task: performing coun-
terfactual inference. In the medical setting, counterfactual inference attempts to model the effect
of an intervention such as a surgery or a drug, on an outcome, e.g. whether the patient survived.
The hardness of this problem lies in the fact that typically, for a single patient, we only see one
intervention-outcome pair (the patient cannot have taken and not taken the drug). The key point here
is that by modelling the sequence of observations such as diagnoses and lab reports, as well as the
interventions or actions (in the form of surgeries and drugs administered) across patients, we hope
to learn the effect of interventions on a patient’s future state.

We evaluate our model in two settings. First we introduce “Healing MNIST”, a dataset of perturbed,
noisy and rotated MNIST digits. We show our model captures both short- and long-range effects of
actions performed on these digits. Second, we use EHR data from 8, 000 diabetic and pre-diabetic
patients gathered over 4.5 years. We investigate various kinds of Kalman filters learned using our
framework and use our model to learn the effect anti-diabetic medication has on patients.

The contributions of this paper are as follows:

• Develop a method for probabilistic generative modelling of sequences of complex obser-
vations, perturbed by non-linear actions, using deep neural nets as a building block. We
derive a bound on the log-likelihood of sequential data and an algorithm to learn a broad
class of Kalman filters.

• We evaluate the efficacy of different recognition distributions for inference and learning.
• We consider this model for use in counterfactual inference with emphasis on the medical

setting. To the best of our knowledge, the use of continuous state space models has not
been considered for this goal. On a synthetic setting we empirically validate that our model
is able to capture patterns within a very noisy setting and model the effect of external ac-
tions. On real patient data we show that our model can successfully perform counterfactual
inference to show the effect of anti-diabetic drugs on diabetic patients.
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In the following sections, we show how to replace all the linear transformations with non-linear
transformations parameterized by neural nets. The upshot is that the non-linearity makes learning
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much more challenging, as the posterior distribution p(z1, . . . zT |x1, . . . , xT

, u1, . . . , uT

) becomes
intractable to compute.

Stochastic Backpropagation In order to overcome the intractability of posterior inference, we make
use of recently introduced variational autoencoders (Rezende et al. , 2014; Kingma & Welling, 2013)
to optimize a variational lower bound on the model log-likelihood. The key technical innovation
is the introduction of a recognition network, a neural network which approximates the intractable
posterior.

Let p(x, z) = p0(z)p✓(x|z) be a generative model for the set of observations x, where p0(z) is the
prior on z and p

✓

(x|z) is a generative model parameterized by ✓. In a model such as the one we
posit, the posterior distribution p

✓

(z|x) is typically intractable. Using the well-known variational
principle, we posit an approximate posterior distribution q

�

(z|x), also called a recognition model -
see Figure 1a. We then obtain the following lower bound on the marginal likelihood:
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where the inequality is by Jensen’s inequality. Variational autoencoders aim to maximize the lower
bound using a parametric model q

�

conditioned on the input. Specifically, Rezende et al. (2014);
Kingma & Welling (2013) both suggest using a neural net to parameterize q

�

, such that � are the
parameters of the neural net. The challenge in the resulting optimization problem is that the lower
bound (1) includes an expectation w.r.t. q

�

, which implicitly depends on the network parameters
�. This difficulty is overcome by using stochastic backpropagation: assuming that the latent state
is normally distributed q

�

(z|x) ⇠ N (µ

�

(x),⌃

�

(x)), a simple transformation allows one to obtain
Monte Carlo estimates of the gradients of E

q�(z|x) [log p✓(x|z)] with respect to �. The KL term in
(1) can be estimated similarly since it is also an expectation. If we assume that the prior p0(z) is
also normally distributed, the KL and its gradients may be obtained analytically.

Counterfactual Estimation Counterfactual estimation is the task of inferring the probability of a
result given different circumstances than those empirically observed. For example, in the medical
setting, one is often interested in questions such as “What would the patient’s blood sugar level be
had she taken a different medication?”. Knowing the answers to such questions could lead to better
and more efficient healthcare. We are interested in providing better answers to this type of questions,
by leveraging the power of large-scale Electronic Health Records.

Pearl (2009) framed the problem of counterfactual estimation in the language of graphical models
and do-calculus. If one knows the graphical model of the variables in question, then for some
structures estimation of counterfactuals is possible by setting a variable of interest (e.g. medication
prescribed) to a given value and performing inference on a derived sub-graph. In this work, we do
not seek to learn the true underlying causal graph structure but rather seek to use do-calculus to
observe the effect of interventions under a causal interpretation of the model we posit.

3 Related Work

The literature on sequential modeling and Kalman filters is vast and here we review some of the
relevant work on the topic with particular emphasis on recent work in machine learning. We point
the reader to Haykin (2004) for a summary of some approaches to learn Kalman filters.

Mirowski & LeCun (2009) model sequences using dynamic factor graphs with an EM-like proce-
dure for energy minimization. Srivastava et al. (2015) consider unsupervised learning of video
representations with LSTMs. They encode a sequence in a fixed length hidden representation of an
LSTM-RNN and reconstruct the subsequent sequence based on this representation. Gregor et al.
(2015) consider a temporal extension to variational autoencoders where independent latent variables
perturb the hidden state of an RNN across time.

Langford et al. (2009) adopt a different approach to learn nonlinear dynamical systems using black-
box classifiers. Their method relies on learning three sets of classifiers. The first is trained to
construct a compact representation s

t

to predict the x

t+1 from x

t

, the second uses s
t�1 and x

t�1 to
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反事実推定
反事実推定（Counterfactual Estimation ）

¤ 実際に観測したものとは異なる状況下での確率を推定する．
¤ 英語で⾔う仮定法

¤ もし違う薬を処⽅したら，患者の⾎糖値はどうなるのか？

¤ しかし確率⾔語では，厳密には因果関係（原因と結果）を記述するこ
とはできない．
¤ 確率⾔語で記述できるのは「観察的記述」のみ

¤ 𝑝(⾬|濡れる)は，濡れたという状態を観測したという条件下に過ぎな
い．

¤ もし濡らしたならば，という「介⼊的記述」はできない・・・

¤ 補⾜：統計学では，因果関係をものすごく嫌っている．
¤ ピアソンとかヒュームの影響？



統計的因果推論
Pearl(2009)

¤ これまでの確率⾔語を拡張し，新たにdo演算⼦を導⼊することを提案し
た．

𝑝 𝑦 𝑥 → 𝑝 𝑦 𝑑𝑜 𝑥
¤ 左は，𝑥であるときの𝑦
¤ 右は，𝑥に変えたときの𝑦

¤ do演算⼦を導⼊することで，反事実推論を定式化できる．
¤ グラフィックモデルでわかっている場合，関⼼のある変数の値を変更して，
得られたサブグラフで実⾏することで可能

¤ 細かい話は「統計的因果推論」でググってください・・・



提案モデル



提案モデル
¤ 次のようなシークエンスを考える

¤ 観測
¤ ⾏動
¤ 潜在状態

¤ このとき，提案モデルの⽣成過程は次のようになる
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the parameters of the prior and approximation to the posterior at time t 2 [1, . . . T ] as a deterministic
function of the hidden state of the RNN. There are a few key differences between their work and ours.
First, they do not model the effect of external actions on the data, and second, their choice of model
ties together inference and sampling from the model whereas we consider decoupled generative and
recognition networks. Finally, the time varying “memory” of their resulting generative model is both
deterministic and stochastic whereas ours is entirely stochastic. i.e our model retains the Markov
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latent dimension within which to perform optimal control, our goal is different: we wish to model the
data in order to perform counterfactual inference. Their training algorithm relies on approximating
the bound on the likelihood by training on consecutive pairs of observations.

In general, control applications deal with domains where the effect of action is instantaneous, unlike
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Morgan & Winship (2014); Höfler (2005); Rosenbaum (2002). For insightful work on counterfactual
inference, in the context of a complex machine-learning and ad-placement system, see Bottou et al.
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Recently, Velez (2013) use a partially observable Markov process for modeling diabetic patients over
time, finding that the latent state corresponds to relevant lab test levels (specifically, A1c levels).

4 Model

Our goal is to fit a generative model to a sequence of observations and actions, motivated by the
nature of patient health record data. We assume that the observations come from a latent state which
evolves over time. We assume the observations are a noisy, non-linear function of this latent state.
Finally, we also assume that we can observe actions, which affect the latent state in a possibly
non-linear manner.
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That is, we assume that the distribution of the latent states is Normal, with a mean and covariance
which are nonlinear functions of the previous latent state, the previous actions, and the time different
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Morgan & Winship (2014); Höfler (2005); Rosenbaum (2002). For insightful work on counterfactual
inference, in the context of a complex machine-learning and ad-placement system, see Bottou et al.
(2013).

Recently, Velez (2013) use a partially observable Markov process for modeling diabetic patients over
time, finding that the latent state corresponds to relevant lab test levels (specifically, A1c levels).

4 Model

Our goal is to fit a generative model to a sequence of observations and actions, motivated by the
nature of patient health record data. We assume that the observations come from a latent state which
evolves over time. We assume the observations are a noisy, non-linear function of this latent state.
Finally, we also assume that we can observe actions, which affect the latent state in a possibly
non-linear manner.

Denote the sequence of observations ~x = (x1, . . . , xT

) and actions ~u = (u1, . . . , uT�1), with
corresponding latent states ~z = (z1, . . . , zT ). As previously, we assume that x

t

2 Rd, u
t

2 Rc, and
z

t

2 Rs. The generative model for the deep Kalman filter is then given by:

z1 ⇠ N (µ0;⌃0)

z

t

⇠ N (G
↵

(z

t�1, ut�1,�t

), S
�

(z

t�1, ut�1,�t

))

x

t

⇠ ⇧(F


(z

t

)).

(2)

That is, we assume that the distribution of the latent states is Normal, with a mean and covariance
which are nonlinear functions of the previous latent state, the previous actions, and the time different

4

predict s
t

. The third trains classifiers to use s

<t

to predict s
t

and consequently x

t

. In essence, the
latent space s

t

is constructed using these classifiers.

Gan et al. (2015) similarly learn a generative model by maximizing a lower bound on the likelihood
of sequential data but do so in a model with discrete random variables.

Bayer & Osendorfer (2014) create a stochastic variant of Recurrent Neural Networks (RNNs) by
making the hidden state of the RNN a function of stochastically sampled latent variables at every
time step. Chung et al. (2015) model sequences of length T using T variational autoencoders. They
use a single RNN that (1) shares parameters in the inference and generative network and (2) models
the parameters of the prior and approximation to the posterior at time t 2 [1, . . . T ] as a deterministic
function of the hidden state of the RNN. There are a few key differences between their work and ours.
First, they do not model the effect of external actions on the data, and second, their choice of model
ties together inference and sampling from the model whereas we consider decoupled generative and
recognition networks. Finally, the time varying “memory” of their resulting generative model is both
deterministic and stochastic whereas ours is entirely stochastic. i.e our model retains the Markov
Property and other conditional independence statements held by Kalman filters.

Learning Kalman filters with Multi-Layer Perceptrons was considered by Raiko & Tornio (2009).
They approximate the posterior using non-linear dynamic factor analysis (Valpola & Karhunen,
2002), which scales quadratically with the latent dimension. Recently, Watter et al. (2015) use
temporal generative models for optimal control. While Watter et al. aim to learn a locally linear
latent dimension within which to perform optimal control, our goal is different: we wish to model the
data in order to perform counterfactual inference. Their training algorithm relies on approximating
the bound on the likelihood by training on consecutive pairs of observations.

In general, control applications deal with domains where the effect of action is instantaneous, unlike
in the medical setting. In addition, most control scenarios involve a setting such as controlling a
robot arm where the control signal has a major effect on the observation; we contrast this with the
medical setting where medication can often have a weak impact on the patient’s state, compared
with endogenous and environmental factors.

For a general introduction to estimating expected counterfactual effects over a population - see
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VAEとの違い
¤ ⽣成モデルで⽐較

¤ 点線部分が変分推論
¤ DKFでは，推論部分を に集約する．
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ters. In the past, modifications to the Kalman filter typically introduced a new learning algorithm
and heuristics to approximate the posterior more accurately. In contrast, within the framework we
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any such model can be done using backpropagation as will be detailed in the next section.
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(b) Deep Kalman Filter

Figure 1: (a): Learning static generative models. Solid lines denote the generative model p0(z)p✓(x|z), dashed
lines denote the variational approximation q�(z|x) to the intractable posterior p(z|x). The variational param-
eters � are learned jointly with the generative model parameters ✓. (b): Learning in a Deep Kalman Filter. A
parametric approximation to p✓(~z|~x), denoted q�(~z|~x, ~u), is used to perform inference during learning.

5 Learning using Stochastic Backpropagation

5.1 Maximizing a Lower Bound

We aim to fit the generative model parameters ✓ which maximize the conditional likelihood of the
data given the external actions, i.e we desire max
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log p
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(x1 . . . , xT

|u1 . . . uT�1). Using the vari-
ational principle, we apply the lower bound on the log-likelihood of the observations ~x derived in
Eq. (1). We consider the extension of the Eq. (1) to the temporal setting where we use the following
factorization of the prior:
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We motivate this structured factorization of q
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in Section 5.2. We condition the variational approxi-
mation not just on the inputs ~x but also on the actions ~u.

Our goal is to derive a lower bound to the conditional log-likelihood in a form that will factorize
easily and make learning more amenable. The lower bound in Eq. (1) has an analytic form of the
KL term only for the simplest of transition models G

↵

, S
�

. Resorting to sampling for estimating the
gradient of the KL term results in very high variance. Below we show another way to factorize the
KL term which results in more stable gradients, by using the Markov property of our model.

1More precisely, this is a semi-Markov model, and we assume that the time intervals are modelled separately.
In our experiments we consider homogeneous time intervals.
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尤度最⼤化
¤ ⽬的は次の尤度の最⼤化

¤ しかし，厳密には解けないので変分推論

¤ 変分推論部分は次のようになる．

¤ 下界は次のように求められる．
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any such model can be done using backpropagation as will be detailed in the next section.
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5 Learning using Stochastic Backpropagation

5.1 Maximizing a Lower Bound

We aim to fit the generative model parameters ✓ which maximize the conditional likelihood of the
data given the external actions, i.e we desire max
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log p
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|u1 . . . uT�1). Using the vari-
ational principle, we apply the lower bound on the log-likelihood of the observations ~x derived in
Eq. (1). We consider the extension of the Eq. (1) to the temporal setting where we use the following
factorization of the prior:
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We motivate this structured factorization of q
�

in Section 5.2. We condition the variational approxi-
mation not just on the inputs ~x but also on the actions ~u.

Our goal is to derive a lower bound to the conditional log-likelihood in a form that will factorize
easily and make learning more amenable. The lower bound in Eq. (1) has an analytic form of the
KL term only for the simplest of transition models G

↵

, S
�

. Resorting to sampling for estimating the
gradient of the KL term results in very high variance. Below we show another way to factorize the
KL term which results in more stable gradients, by using the Markov property of our model.

1More precisely, this is a semi-Markov model, and we assume that the time intervals are modelled separately.
In our experiments we consider homogeneous time intervals.
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Algorithm 1 Learning Deep Kalman Filters

while notConverged() do
~x sampleMiniBatch()

Perform inference and estimate likelihood:
1. ẑ ⇠ q
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(~z|~x, ~u)
2. x̂ ⇠ p

✓

(~x|ẑ)
3. Compute r

✓

L and r
�

L (Differentiating (5))
4. Update ✓,� using ADAM

end while

We have for the conditional log-likelihood (see Supplemental Section A for a more detailed deriva-
tion):
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The KL divergence can be factorized as:
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(Factorization of p(~z))
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Equation (5) is differentiable in the parameters of the model (✓,�), and we can apply backprop-
agation for updating ✓, and stochastic backpropagation for estimating the gradient w.r.t. � of the
expectation terms w.r.t. q

�

(z

t

). Algorithm 1 depicts the learning algorithm. It can be viewed as a
four stage process. The first stage is inference of ~z from an input ~x, ~u by the recognition network q

�

.
The second stage is having the generative model p

✓

reconstruct the input using the current estimates
of the posterior. The third stage involves estimating gradients of the likelihood with respect to ✓ and
�, and the fourth stage involves updating parameters of the model. Gradients are typically averaged
across stochastically sampled mini-batches of the training set.

5.2 On the choice of the Optimal Variational Model

For time varying data, there exist many choices for the recognition network. We consider four
variational models of increasing complexity. Each model conditions on a different subset of the
observations through the use of Multi-Layer Perceptrons (MLP) and Recurrent Neural Nets (RNN)
(As implemented in Zaremba & Sutskever (2014)):
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識別モデルの選択
¤ 識別モデル（変分推論部分）は次のようなモデル化⽅法がある．

→実験で検証

¤ 事後確率の因⼦分解は次のようになる

¤ 実は�⃗�の全系列を使わなくても，事後分布の推定は可能
¤ 𝑝に𝑞をなるべく近似する⽅法として，Universality of normalizing 

flows[Rezende+ 2015]がある
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) parameterized by an MLP
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t+1, ut�1, ut

, u

t+1) parameterized by an MLP

• q-RNN: q(z
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, u1, . . . ut

) parameterized by a RNN

• q-BRNN: q(z
t

|x1, . . . , xT

, u1, . . . , uT

) parameterized by a bi-directional RNN

In the experimental section we compare the performance of these four models on a challenging
sequence reconstruction task.

An interesting question is whether the Markov properties of the model can enable better design of
approximations to the posterior.

Theorem 5.1. For the graphical model depicted in Figure 1b, the posterior factorizes as:

p(~z|~x, ~u) = p(z1|~x, ~u)
TY

t=2

p(z
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|z
t�1, xt

, . . . , x

T

, u

t�1, . . . , uT�1)

Proof. We use the independence statements implied by the generative model in Figure 1b to note
that p(~z|~x, ~u), the true posterior, factorizes as:

p(~z|~x, ~u) = p(z1|~x, ~u)
TY

t=2

p(z

t

|z
t�1, ~x, ~u)

Now, we notice that z
t

?? x1, . . . , xt�1|zt�1 and z

t

?? u1 . . . , ut�2|zt�1, yielding:

p(~z|~x, ~u) = p(z1|~x, ~u)
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, u

t�1, . . . , uT�1)

The significance of Theorem 5.1 is twofold. First, it tells us how we can use the Markov structure
of our graphical model to simplify the posterior that any q

�

(~z) must approximate. Second, it yields
insight on how to design approximations to the true posterior. Indeed this motivated the factorization
of q

�

in Eq. 3. Furthermore, instead of using a bi-directional RNN to approximate p(z

t

|~x, ~u) by
summarizing both the past and the future (x1, . . . , xT

), one can approximate the same posterior dis-
tribution using a single RNN that summarizes the future (x

t

, . . . , x

T

) as long as one also conditions
on the previous latent state (z

t�1). Here, z
t�1 serves as a summary of x1, . . . , xt�1.

For the stochastic backpropagation model, the variational lower bound is tight if and only if
KL(q

�

(z|x)||p
✓

(z|x)) = 0. In that case, we have that L(x; (✓,�)) = log p

✓

(x), and the optimiza-
tion objective (5) reduces to a maximum likelihood objective. In the stochastic backpropagation
literature, the variational distribution q

�

(z|x) is usually Gaussian and therefore cannot be expected
to be equal to p

✓

(z|x). An interesting question is whether using the idea of the universality of nor-
malizing flows (Tabak et al. , 2010; Rezende & Mohamed, 2015) one can transform q

�

(z|x) to be
equal (or arbitrarily close) to p

✓

(z|x) and thus attain equality in the lower bound. Such a result
leads to a consistency result for the learned model, stemming from the consistency of maximum
likelihood.

5.3 Counterfactual Inference

Having learned a generative temporal model, we can use the model to perform counterfactual infer-
ence. Formally, consider a scenario where we are interested in evaluating the effect of an intervention
at time t. We can perform inference on the set of observations: {x1, . . . , xt

, u1, . . . , ut�1} using the
learned q

�

. This gives us an estimate z

t

. At this point, we can apply u

t

(the action intended for the
patient) as well as ũ

t

(the action to be contrasted against). We can forward sample from this latent
state in order to contrast the expected effect of different actions.
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learned q

�

. This gives us an estimate z

t

. At this point, we can apply u

t

(the action intended for the
patient) as well as ũ

t

(the action to be contrasted against). We can forward sample from this latent
state in order to contrast the expected effect of different actions.
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実験



Healing MNIST 
¤ 本当は医療データを使いたいが，不確かでノイズが⼊っている上に，
いろいろ⾯倒．

¤ 本研究では，MNISTデータを加⼯したものを⽤いる．
¤ 回転を⾏動𝑢，回転した画像を観測𝑥とする．

¤ シーケンスのランダムな3連続画像の左上に四⾓形を重ねている．
¤ ⾏動𝑢とは関係ない影響を意図（季節的なインフルや病気）
¤ 観測する画像には20%のノイズが⼊っている．

¤ このデータを使って次の実験をする．
¤ Small Healing MNIST 

¤ 40000の⻑さ5のシーケンスで訓練
¤ Large Healing MNIST

¤ 140000の⻑さ5のシーケンスで訓練

作成したデータのイメージ

TS

(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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Small Healing MNIST 
¤ テスト対数尤度で4つの識別モデルを評価

(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
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Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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• q-INDEP: q(z
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) parameterized by an MLP

• q-LR: q(z
t

|x
t�1, xt

, x

t+1, ut�1, ut

, u

t+1) parameterized by an MLP

• q-RNN: q(z
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|x1, . . . , xt

, u1, . . . ut

) parameterized by a RNN

• q-BRNN: q(z
t

|x1, . . . , xT

, u1, . . . , uT

) parameterized by a bi-directional RNN

In the experimental section we compare the performance of these four models on a challenging
sequence reconstruction task.

An interesting question is whether the Markov properties of the model can enable better design of
approximations to the posterior.

Theorem 5.1. For the graphical model depicted in Figure 1b, the posterior factorizes as:

p(~z|~x, ~u) = p(z1|~x, ~u)
TY

t=2

p(z

t

|z
t�1, xt

, . . . , x

T

, u

t�1, . . . , uT�1)

Proof. We use the independence statements implied by the generative model in Figure 1b to note
that p(~z|~x, ~u), the true posterior, factorizes as:

p(~z|~x, ~u) = p(z1|~x, ~u)
TY

t=2

p(z

t

|z
t�1, ~x, ~u)

Now, we notice that z
t

?? x1, . . . , xt�1|zt�1 and z

t

?? u1 . . . , ut�2|zt�1, yielding:

p(~z|~x, ~u) = p(z1|~x, ~u)
TY

t=2

p(z

t

|z
t�1, xt

, . . . , x

T

, u

t�1, . . . , uT�1)

The significance of Theorem 5.1 is twofold. First, it tells us how we can use the Markov structure
of our graphical model to simplify the posterior that any q

�

(~z) must approximate. Second, it yields
insight on how to design approximations to the true posterior. Indeed this motivated the factorization
of q

�

in Eq. 3. Furthermore, instead of using a bi-directional RNN to approximate p(z

t

|~x, ~u) by
summarizing both the past and the future (x1, . . . , xT

), one can approximate the same posterior dis-
tribution using a single RNN that summarizes the future (x

t

, . . . , x

T

) as long as one also conditions
on the previous latent state (z

t�1). Here, z
t�1 serves as a summary of x1, . . . , xt�1.

For the stochastic backpropagation model, the variational lower bound is tight if and only if
KL(q

�

(z|x)||p
✓

(z|x)) = 0. In that case, we have that L(x; (✓,�)) = log p

✓

(x), and the optimiza-
tion objective (5) reduces to a maximum likelihood objective. In the stochastic backpropagation
literature, the variational distribution q

�

(z|x) is usually Gaussian and therefore cannot be expected
to be equal to p

✓

(z|x). An interesting question is whether using the idea of the universality of nor-
malizing flows (Tabak et al. , 2010; Rezende & Mohamed, 2015) one can transform q

�

(z|x) to be
equal (or arbitrarily close) to p

✓

(z|x) and thus attain equality in the lower bound. Such a result
leads to a consistency result for the learned model, stemming from the consistency of maximum
likelihood.

5.3 Counterfactual Inference

Having learned a generative temporal model, we can use the model to perform counterfactual infer-
ence. Formally, consider a scenario where we are interested in evaluating the effect of an intervention
at time t. We can perform inference on the set of observations: {x1, . . . , xt

, u1, . . . , ut�1} using the
learned q

�

. This gives us an estimate z

t

. At this point, we can apply u

t

(the action intended for the
patient) as well as ũ

t

(the action to be contrasted against). We can forward sample from this latent
state in order to contrast the expected effect of different actions.
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q-BRNNが
⼀番良くなるのは当然
（forward backward

法に似てる）
q-INDEPが悪くなるのも当然
（四⾓形を捉えられない）

q-LRの⽅が良くなっている
が，実際のサンプルでは四
⾓形は捉えられていない



Small Healing MNIST 
¤ 各モデルでのサンプル

¤ q-BRNNとq-RNNが良さそう

(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.
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(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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Large Healing MNIST 
¤ 再構成した画像

¤ TS:観測した画像
¤ R:再構成画像

¤ 異なるスタイルの数字を学習している（＝個々の患者）

R

TS

R

TS

R

TS

R

TS

R

TS

(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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Large Healing MNIST 
¤ 回転⾓度を調整（治療の強さに該当）

¤ ⾒たことのない⾏動でも⽣成できる＝反事実推論の簡単な例
(a) Reconstruction during training

Large Rotation Right

Large Rotation Left

No Rotation

(b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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(a) Reconstruction during training

Small Rotation Right

Small Rotation Left

Large Rotation Right

(b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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Large Healing MNIST 
¤ ⾒たことのない例で系列を⽣成

¤ ⾒たことのない画像でも系列を⽣成できた
¤ 新しい患者に対しても，薬を処⽅した時のシミュレーションができ
る！

¤ ノイズを加えてもうまく⽣成できることがわかった．

(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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(a) Reconstruction during training (b) Samples: Different rotations (c) Inference on unseen digits

Figure 2: Large Healing MNIST. (a) Pairs of Training Sequences (TS) and Mean Probabilities of Reconstruc-
tions (R) shown above. (b) Mean probabilities sampled from the model under different, constant rotations.
(c) Counterfactual Reasoning. We reconstruct variants of the digits 5, 1 not present in the training set, with
(bottom) and without (top) bit-flip noise. We infer a sequence of 1 timestep and display the reconstructions
from the posterior. We then keep the latent state and perform forward sampling and reconstruction from the
generative model under a constant right rotation.

(a) Samples from models trained with different q�
(b) Test Log-Likelihood for models trained with
different q�

Figure 3: Small Healing MNIST: (a) Mean probabilities sampled under different variational models with a
constant, large rotation applied to the right. (b) Test log-likelihood under different recognition models.
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医療データへの応⽤
¤ ⼤⼿健康保険業者のヘルスケア請求データを利⽤

¤ データの詳細は全く不明
¤ 8000⼈の糖尿病患者に抗糖尿病薬を飲ませた時の効果を調査
¤ 観測変数：

¤ A1cレベル，グルコース，その他年齢，性別など
¤ ⾏動変数：

¤ 9種類の糖尿病の薬（インシュリンやメトホルミンなど）
¤ 3か⽉間隔の4年半のデータを1シーケンスとする．

¤ このデータを学習して，反事実推論を⾏いたい.
¤ 所定の薬で治療していないかった場合，患者のA1cとグルコースレベルは
どうなっていたのか？



医療データへの応⽤
¤ しかし，いくつか問題点がある．

¤ A1cとグルコースレベルは常に測っているわけではない
¤ しかも糖尿病の疑いが⾼い⼈の⽅がより測る頻度が多い＝混乱の要因

¤ そこで，新たにlab indicator変数𝑥-./を⽤意する
¤ 結果にかかわらず，labのテストを受けたかどうかを表す．
¤ これによって，観測変数が潜在変数とlab indicator変数に条件づけられる．

¤ 反事実推論をするときには，do演算⼦を⽤いることで推論が可能
¤ Lab indicatorを1にして，潜在変数との依存関係をなくす

xt

ztzt�1 zt+1

xt
ind

(a) Graphical model during training

xt

ztzt�1 zt+1

1

(b) Graphical model during counterfactual
inference

Figure 5: (a) Generative model with lab indicator variable, focusing on time step t. (b) For counterfactual
inference we set xt

ind to 1, implementing Pearl’s do-operator

We train the model on a dataset of 8000 patients. We use q-BRNN as the recognition model.

Variants of Kalman Filters: Figure 4(a) depicts the test log likelihood under variants of the graph-
ical model depicted in Figure 1b. Em(ission) denotes F



, the emission function, and Tr(ansition)
denotes G

↵

, the transition function of the mean. We learn a fixed diagonal covariance matrix (S
�

).
See Eq. (2) for the role these quantities play in the generative model. Linear (L) denotes a lin-
ear relationship between entities, and Non-Linear (NL) denotes a non-linear one parameterized by
a two-layer neural network. Early in training, a non-linear emission function suffices to achieve a
high test log likelihood though as training progresses the models with non-linear transition functions
dominate.

Counterfactual Inference: We use a model with non-linear transition and non-linear emission
functions. We look at patients whose first prescribed anti-diabetic drug was Metformin, the most
common first-line anti-diabetic drug, and who have at least six months of data before the first Met-
formin prescription. This leaves us with 800 patients for whom we ask the counterfactual question.
For these patients, we infer the latent state up to the time t0 of first Metformin prescription. After
t0 we perform forward sampling under two conditions: the “with” condition is using the patient’s
true medication prescriptions; the “without” condition is removing the medication prescriptions,
simulating a patient who receives no anti-diabetic medication. In both cases we set the lab indicator
variable x

t

ind to be 1, so we can observe the A1c and glucose lab values. We then compare the
inferred A1c and glucose lab values between the “with” and “without” conditions after the time of
first Metformin prescription. Figure 4 presents the results, where we track the proportion of patients
with high glucose level (glucose in the top quantile) and high A1c levels (A1c above 8%), starting
from the time of first Metformin prescription. It is evident that patients who do not receive the
anti-diabetic drugs are much more prone to having high glucose and A1c levels.

7 Discussion

We show promising results that nonlinear-state space models can be effective models for counter-
factual analysis. The parametric posterior can be used to approximate the latent state of unseen
data. We can forward sample from the model under different actions and observe their consequent
effect. Beyond counterfactual inference, the model represents a natural way to embed patients into
latent space making it possible to ask questions about patient similarity. Another avenue of work is
understanding whether the latent variable space encodes identifiable characteristics of a patient and
whether the evolution of the latent space corresponds to known disease trajectories.

There exists interesting avenues of future work for our model in a multitude of areas. A natu-
ral question that arises, particularly with models trained on the Healing MNIST is the quality of
temporal and spatial invariance in the learned filters. Unsupervised learning of videos is another
domain where our model holds promise. Approaches such as (Srivastava et al. , 2015) model video
sequences using LSTMs with deterministic transition operators. The effect of stochasticity in the
latent space is an interesting one to explore.
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実験結果
¤ 識別モデルにq-BRNNを使い，8000⼈のデータで学習

¤ カルマンフィルタを線形モデルと⾮線形モデルで⽐較実験
¤ L : linear relationship 
¤ NL : 2層のNN（パラメータは1つ）
¤ Em(ission) : Fκ
¤ Tr(ansition) : Gα
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Figure 4: Results of disease progression modeling for 8000 diabetic and pre-diabetic patients. (a) Test log-
likelihood under different model variants. Em(ission) denotes F, Tr(ansition) denotes G↵ under Linear (L)
and Non-Linear (NL) functions. We learn a fixed diagonal S� . (b) Proportion of patients inferred to have
high (top quantile) glucose level with and without anti-diabetic drugs, starting from the time of first Metformin
prescription. (c) Proportion of patients inferred to have high (above 8%) A1c level with and without anti-
diabetic drugs, starting from the time of first Metformin prescription. Both (b) and (c) are created using the
model trained with non-linear emission and transition functions.

The (binary) observations of interest here are: A1c level (hemoglobin A1c, a type of protein com-
monly used in the medical literature to indicate level of diabetes where high A1c level are an indica-
tor for diabetes) and glucose (the amount of a patient’s blood sugar). We bin glucose into quantiles
and A1c into medically meaningful bins. The observations also include age, gender and ICD-9 di-
agnosis codes depicting various comorbidities of diabetes such as congestive heart failure, chronic
kidney disease and obesity.

For actions, we consider prescriptions of nine diabetic drugs including Metformin and Insulin, where
Metformin is the most commonly prescribed first-line anti-diabetic drug. For each patient, we group
their data over four and half years into three months intervals.

We aim to assess the effect of anti-diabetic drugs on a patient’s A1c and glucose levels. To that end,
we ask a counterfactual question: how would the patient’s A1c and glucose levels be had they not
received the prescribed medications as observed in the dataset.

A complication in trying to perform counterfactual inference for the A1c and glucose levels is that
these quantities are not always measured for each patient at each time step. Moreover, patients
who are suspected of being diabetic are tested much more often for their A1c and glucose levels,
compared with healthy patients, creating a confounding factor, since diabetic patients tend to have
higher A1c and glucose levels. To overcome this we add an observation variable called “lab indica-
tor”, denoted x

ind, which indicates whether the respective lab test, either A1c or glucose, was taken
regardless of its outcome. We condition the time t lab indicator observation, x

t

ind, on the latent state
z

t

, and we condition the A1c and glucose value observations on both the latent state and the lab
indicator observation. That way, once the model is trained we can perform counterfactual inference
by using the do-operator on the lab indicator: setting it to 1 and ignoring its dependence on the latent
state. See Figure 5 for an illustration of the model.
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⾮線形モデルが
⼀番尤度が⾼い



実験結果
¤ ⾮線形モデルを利⽤して反事実推論をする．

¤ メトホルミンを最初に処⽅された800⼈のデータを利⽤
¤ その後処⽅を続けた場合（with）と続けなかった（without）場合で⽐較
¤ グルコースレベルとA1cレベルの⾼い患者の割合で⽐較

¤ 処⽅を受けなかった患者が明らかに悪くなっている．

(a) Test Log-Likelihood
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Figure 4: Results of disease progression modeling for 8000 diabetic and pre-diabetic patients. (a) Test log-
likelihood under different model variants. Em(ission) denotes F, Tr(ansition) denotes G↵ under Linear (L)
and Non-Linear (NL) functions. We learn a fixed diagonal S� . (b) Proportion of patients inferred to have
high (top quantile) glucose level with and without anti-diabetic drugs, starting from the time of first Metformin
prescription. (c) Proportion of patients inferred to have high (above 8%) A1c level with and without anti-
diabetic drugs, starting from the time of first Metformin prescription. Both (b) and (c) are created using the
model trained with non-linear emission and transition functions.

The (binary) observations of interest here are: A1c level (hemoglobin A1c, a type of protein com-
monly used in the medical literature to indicate level of diabetes where high A1c level are an indica-
tor for diabetes) and glucose (the amount of a patient’s blood sugar). We bin glucose into quantiles
and A1c into medically meaningful bins. The observations also include age, gender and ICD-9 di-
agnosis codes depicting various comorbidities of diabetes such as congestive heart failure, chronic
kidney disease and obesity.

For actions, we consider prescriptions of nine diabetic drugs including Metformin and Insulin, where
Metformin is the most commonly prescribed first-line anti-diabetic drug. For each patient, we group
their data over four and half years into three months intervals.

We aim to assess the effect of anti-diabetic drugs on a patient’s A1c and glucose levels. To that end,
we ask a counterfactual question: how would the patient’s A1c and glucose levels be had they not
received the prescribed medications as observed in the dataset.

A complication in trying to perform counterfactual inference for the A1c and glucose levels is that
these quantities are not always measured for each patient at each time step. Moreover, patients
who are suspected of being diabetic are tested much more often for their A1c and glucose levels,
compared with healthy patients, creating a confounding factor, since diabetic patients tend to have
higher A1c and glucose levels. To overcome this we add an observation variable called “lab indica-
tor”, denoted x

ind, which indicates whether the respective lab test, either A1c or glucose, was taken
regardless of its outcome. We condition the time t lab indicator observation, x

t

ind, on the latent state
z

t

, and we condition the A1c and glucose value observations on both the latent state and the lab
indicator observation. That way, once the model is trained we can perform counterfactual inference
by using the do-operator on the lab indicator: setting it to 1 and ignoring its dependence on the latent
state. See Figure 5 for an illustration of the model.
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Figure 4: Results of disease progression modeling for 8000 diabetic and pre-diabetic patients. (a) Test log-
likelihood under different model variants. Em(ission) denotes F, Tr(ansition) denotes G↵ under Linear (L)
and Non-Linear (NL) functions. We learn a fixed diagonal S� . (b) Proportion of patients inferred to have
high (top quantile) glucose level with and without anti-diabetic drugs, starting from the time of first Metformin
prescription. (c) Proportion of patients inferred to have high (above 8%) A1c level with and without anti-
diabetic drugs, starting from the time of first Metformin prescription. Both (b) and (c) are created using the
model trained with non-linear emission and transition functions.

The (binary) observations of interest here are: A1c level (hemoglobin A1c, a type of protein com-
monly used in the medical literature to indicate level of diabetes where high A1c level are an indica-
tor for diabetes) and glucose (the amount of a patient’s blood sugar). We bin glucose into quantiles
and A1c into medically meaningful bins. The observations also include age, gender and ICD-9 di-
agnosis codes depicting various comorbidities of diabetes such as congestive heart failure, chronic
kidney disease and obesity.

For actions, we consider prescriptions of nine diabetic drugs including Metformin and Insulin, where
Metformin is the most commonly prescribed first-line anti-diabetic drug. For each patient, we group
their data over four and half years into three months intervals.

We aim to assess the effect of anti-diabetic drugs on a patient’s A1c and glucose levels. To that end,
we ask a counterfactual question: how would the patient’s A1c and glucose levels be had they not
received the prescribed medications as observed in the dataset.

A complication in trying to perform counterfactual inference for the A1c and glucose levels is that
these quantities are not always measured for each patient at each time step. Moreover, patients
who are suspected of being diabetic are tested much more often for their A1c and glucose levels,
compared with healthy patients, creating a confounding factor, since diabetic patients tend to have
higher A1c and glucose levels. To overcome this we add an observation variable called “lab indica-
tor”, denoted x

ind, which indicates whether the respective lab test, either A1c or glucose, was taken
regardless of its outcome. We condition the time t lab indicator observation, x

t

ind, on the latent state
z

t

, and we condition the A1c and glucose value observations on both the latent state and the lab
indicator observation. That way, once the model is trained we can perform counterfactual inference
by using the do-operator on the lab indicator: setting it to 1 and ignoring its dependence on the latent
state. See Figure 5 for an illustration of the model.
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まとめ
¤ ⾮線形なカルマンフィルタが反事実推論に有効であることがわかった．

¤ 事後分布は⾒たことのない状態も推論できた．
¤ 異なる⾏動でも，系列をサンプルできた．

¤ 反事実推論だけでなく，患者を潜在変数に落とし込んで，似た患者を
探すこともできる．
¤ 潜在変数が患者個⼈をちゃんとエンコードしているか，潜在変数の変化が
知られている病気の軌跡と対応しているか，などが研究課題

¤ 今後は他の領域に適⽤
¤ ビデオ映像の教師なし学習



感想
¤ VAEを画像⽣成ではなく確率モデルとして活⽤した初めての例？

¤ Deep Learningで因果推論が可能になった．
¤ 個⼈的にはVAEの正しい使い⽅だと思う．

¤ 実験⾃体はまだ⼤したことはない．
¤ 今後に期待？
¤ 着想はかなり⾯⽩い



参考⽂献
¤ 林岳彦⽒の資料

¤ 相関と因果について考える：統計的因果推論、その(不)可能性の中⼼
http://www.slideshare.net/takehikoihayashi/ss-13441401

¤ 確率と因果を⾰命的に架橋する：Judea Pearlのdo演算⼦
http://takehiko-i-
hayashi.hatenablog.com/entry/20111222/1324487579


