Sorry, this entry is only available in Japanese. For the sake of viewer convenience, the content is shown below in the alternative language. You may click the link to switch the active language.
|
date |
title |
contents |
| 1 |
2017/4/11 |
Introduction |
Deep Learningとは/人工知能技術の歴史、社会への影響/講義全体像と注意事項/ 全員挨拶 |
| 2 |
2017/4/18 |
Machine Learning 1 |
Pythonと線形代数,行列・テンソル,数式と実装のブリッジ |
| 3 |
2017/4/25 |
Machine Learning 2 |
k-NN, Logistic Regression, Softmax, train/dev/testデータセット,学習プロセス |
| 4 |
2017/5/2 |
Perceptron + Feed Forward Network, Gradient Descent |
Gradient Descent, MLP, Logistic Regression, Softmax |
| 5 |
2017/5/9 |
Gradient Descent, Stochastic Gradient Descent, Optimizers |
TensorFlow基礎、各種Optimizers、重みの初期化など |
| 6 |
2017/5/16 |
Autoencoders |
Deep Learning、特徴抽出、Autoencoder概要、dA, SdA, Sparse Coding, GPU |
| 7 |
2017/5/23 |
Convolutional Neural Networks(CNN) |
CNN基礎、畳込み、プーリング |
| 8 |
2017/6/6 |
Convolutional Neural Networks(CNN) 2 |
画像処理、前処理、Data Augmentation、Batch Normalization、可視化、最新動向 |
| 9 |
2017/6/13 |
RNN Basics |
系列データ, RNN |
| 10 |
2017/6/20 |
RNN and NLP |
Embedding, Projection, Word2vec, sequence-to-sequence |
| 11 |
2017/6/27 |
RNN, NLP, Image Processing |
Attention, Image caption |
| 12 |
2017/7/4 |
Summary and Advanced Topics |
Advanced Topics |
Like this:
Like Loading...