Learning Deep learning and latest AI technologies

Deep learning has become one of the most innovative technologies and our society is facing to the change coming from its big impact. In the future, no matter what kind of job / what kind of you are involved in, you will be influenced by the impact of advanced AI technologies. Deep Learning JP is offering a series of educational programs including this course named “Deep learning basics” as a preparation for such future.

Deep Learning Basics

This course is designed to cover wide range of Deep learning technologies which are commonly used in latest researches / developments. It starts from basic topics on machine learning such as Logistic regression, MLP and basics of neural networks. After mastering the basic topics, it moves on to more advanced topics such as autoencoders, CNNs, generative models, RNNs and language models. One of the most important characteristics of this course is that it’s a fully implementation-oriented course with practical exercises. In each chapter, you need to tackle on a number of problems and home works that we provide. To allow you to focus on learning the principles of deep learning technologies rather than managing computational environment, we provide iLect.net, an online GPU programming environment on fully-virtualized servers.

  • Every Tue. 14:55 – 16:40
  • Engineering building #2, Room 223, the University of Tokyo
  • It is an independent course and thus a credit from the university won’t be given.


  1. Introduction (2017/4/11)
    What’s Deep Learning? The impact, influence for our society. Explanation of the course.
  2. Machine Learning 1 (2017/4/18)
    Python and Linear Algebra, Matrix and Tensor, etc.
  3. Machine Learning 2 (2017/4/25)
    k-NN, Logistic Regression, Softmax, train/dev/test Data set, Learning Process
  4. Perception+Feed Forward Network, Gradient Descent (2017/ 5/ 2)
    Gradient Descent, MLP, Logistic Regression, Softmax
  5. Gradient Descent, Stochastic Gradient Descent, Optimizers (2017/ 5/ 9)
    TensorFlow Basics, Optimizers, etc.
  6. Autoencoders (2017/ 5/16)
    Deep Learning, Feature Extraction, Autoencoder, dA, SdA, Sparse Coding, GPU
  7. Convolutional Neural Networks(CNN) (2017/ 5/23)
    CNN Basics, Convolution, Pooling
  8. Convolutional Neural Networks(CNN) 2 (2017/ 6/ 6)
    Image Processing, Data Augmentation, Batch Normalization, Visualization, etc.
  9. RNN Basics (2017/ 6/13)
    Series data and RNN
  10. RNN and NLP (2017/ 6/20)
    Embedding, Projection, Word2vec, sequence-to-sequence
  11. RNN, NLP, Image Processing (2017/ 6/27)
    Attention, Image Caption
  12. Summary and Advanced Topics (2017/ 7/ 4)
    Advanced Topics